The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality.
Single-lake studies offer an opportunity for understanding, predicting, and mitigating local or regional threats to lake ecosystems. Our goal was to understand how concurrent environmental stressors such as climate change, eutrophication, and salinization affect long-term lake water quality. We report epilimnetic changes in 18 waterquality parameters collected at seven sites from 1980 to 2016 in Lake George, a large oligotrophic lake in the Adirondack Park, New York, USA. Improvements and deteriorations in water quality occurred over 37 years. We observed a 32% increase in chlorophyll a associated with an increase in orthophosphate, but not total phosphorus or a warming epilimnion (0.05 C/year). Salinization from road deicing salts contributed to the largest deterioration in water quality. However, chloride concentrations and the current rate of increase are low enough that few ecological impacts are likely to occur over the next few decades. Increasing calcium concentrations were not high enough to facilitate the persistence of invasive species in the lake such as zebra mussels (Dreissena polymorpha) but are sufficient for Asian clams (Corbicula fluminea) and the spiny water flea (Bythotrephes longimanus). Similar to other lakes, environmental legislation has supported recovery from acidification, indicated by reduced sulfate and nitrate, and increased alkalinity and pH. Declines in water quality were minor relative to other lakes, suggesting that decades of tourism and development occurred without major deterioration in water quality, but management efforts are needed to curb salinization in the Lake George watershed, particularly as it relates to sodium concentrations to prevent a loss of drinking water quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.