Econometric prediction accuracy for personal income forecasts is examined for a region of the United States. Previously published regional structural equation model (RSEM) forecasts exist ex ante for the state of New Mexico and its three largest metropolitan statistical areas: Albuquerque, Las Cruces and Santa Fe. Quarterly data between 1983 and 2000 are utilized at the state level. For Albuquerque, annual data from 1983 through 1999 are used. For Las Cruces and Santa Fe, annual data from 1990 through 1999 are employed. Univariate time series, vector autoregressions and random walks are used as the comparison criteria against structural equation simulations. Results indicate that ex ante RSEM forecasts achieved higher accuracy than those simulations associated with univariate ARIMA and random walk benchmarks for the state of New Mexico. The track records of the structural econometric models for Albuquerque, Las Cruces and Santa Fe are less impressive. In some cases, VAR benchmarks prove more reliable than RSEM income forecasts. In other cases, the RSEM forecasts are less accurate than random walk alternatives. Copyright © 2005 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.