SummaryTuberculosis (TB) remains a major global health problem accounting for millions of deaths annually. Approximately one-third of the world's population is infected with the causative agent Mycobacterium tuberculosis. The onset of an adaptive immune response to M. tuberculosis is delayed compared with other microbial infections. This delay permits bacterial growth and dissemination. The precise mechanism(s) responsible for this delay have remained obscure. T-cell activation is preceded by dendritic cell (DC) migration from infected lungs to local lymph nodes and synapsis with T cells. We hypothesized that M. tuberculosis may impede the ability of DCs to reach lymph nodes and initiate an adaptive immune response. We used primary human DCs to determine the effect of M. tuberculosis on expression of heterodimeric integrins involved in cellular adhesion and migration. We also evaluated the ability of infected DCs to adhere to and migrate through lung endothelial cells, which is necessary to reach lymph nodes. We show by flow cytometry and confocal microscopy that M. tuberculosis-infected DCs exhibit a significant reduction in surface expression of the b 2 (CD18) integrin. Distribution of integrin b 2 is also markedly altered in M. tuberculosis-infected DCs. A corresponding reduction in the aL (CD11a) and aM (CD11b) subunits that associate with integrin b 2 was also observed. Consistent with reduced integrin surface expression, we show a significant reduction in adherence to lung endothelial cell monolayers and migration towards lymphatic chemokines when DCs are infected with M. tuberculosis. These findings suggest that M. tuberculosis modulates DC adhesion and migration to increase the time required to initiate an adaptive immune response.
SummaryDendritic cells (DCs) are potent antigen-presenting cells necessary to establish effective adaptive immune responses. The cytokine environment that exists at the time of DC differentiation may be an important but often ignored determinant in the phenotypic and functional properties of DCs. Interleukin-27 (IL-27) is a unique cytokine that has both inflammatory and immune suppressive activities. Although it can both promote and oppose activity of different T-cell subsets, mostly anti-inflammatory activity has been described toward macrophages and DCs. However, the specific effect of IL-27 during DC differentiation and how that may change the nature of the antigen-presenting cell has not been investigated. In this report, we show that IL-27 treatment during monocyte-derived DC differentiation enhanced the ability to process antigens and stimulate T-cell activity. DCs differentiated in the presence of IL-27 showed enhanced acidification of latex bead-containing phagosomes that was consistent with elevated expression of vacuolar-ATPases. This resulted in inhibition of intracellular growth of Staphylococcus aureus. In addition, the levels of MHC class II surface expression were higher in DCs differentiated in the presence of IL-27. Production of IL-12 was also significantly increased during S. aureus infection of IL-27-differentiated DCs. The net effect of these activities was enhanced CD4 + T-cell proliferation and T helper type 1 cytokine production. These findings are important to a wide number of immunological contexts and should be considered in the development of future vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.