Understanding key adaptation traits is crucial to developing new cultivars with broad adaptations. The main objective of this research is to understand the genetic basis of winter hardiness (WH) and fall dormancy (FD) in alfalfa and the association between the two traits. QTL analysis was conducted in a pseudo-testcross F1 population developed from two cultivars contrasting in FD (3010 with FD = 2 and CW 1010 with FD = 10). The mapping population was evaluated in three replications at two locations (Watkinsville and Blairsville, GA). FD levels showed low to moderate correlations with WH (0.22–0.57). Assessing dormancy in winter is more reliable than in the fall in southern regions with warm winters. The mapping population was genotyped using Genotyping-by-sequencing (GBS). Single dose allele SNPs (SDA) were used for constructing linkage maps. The parental map (CW 1010) consisted of 32 linkage groups spanning 2127.5 cM with 1377 markers and an average marker density of 1.5 cM/SNP. The maternal map (3010) had 32 linkage groups spanning 2788.4 cM with 1837 SDA SNPs with an average marker density of 1.5 cM/SNP. Forty-five significant (P < 0.05) QTLs for FD and 35 QTLs for WH were detected on both male and female linkage maps. More than 75% (22/28) of the dormancy QTL detected from the 3010 parent did not share genomic regions with WH QTLs and more than 70% (12/17) dormancy QTLs detected from CW 1010 parent were localized in different genomic regions than WH QTLs. These results suggest that the two traits have independent inheritance and therefore can be improved separately in breeding programs.
Background The genetic and genomic basis of flowering time and biomass yield in alfalfa ( Medicago sativa L.) remains poorly understood mainly due to the autopolyploid nature of the species and the lack of adequate genomic resources. We constructed linkage maps using genotyping-by-sequencing (GBS) based single dose allele (SDA) SNP and mapped alfalfa timing of flowering (TOF), spring yield (SY), and cumulative summer biomass (CSB) in a pseudo-testcross F1 population derived from a fall dormant (3010) and a non-dormant (CW 1010) cultivars. We analyzed the quantitative trait loci (QTL) to identify conserved genomic regions and detected molecular markers and potential candidate genes associated with the traits to improve alfalfa and provide genomic resources for the future studies. Results This study showed that both fall dormant and non-dormant alfalfa cultivars harbored QTL for early and late flowering, suggesting that flowering time in alfalfa is not an indicator of its fall dormancy (FD) levels. A weak phenotypic correlation between the flowering time and fall dormancy (FD) in F1 and checks also corroborated that alfalfa FD and TOF are not the predictors of one another. The relationship between flowering time and alfalfa biomass yield was not strong, but the non-dormant had relatively more SY than dormant. Therefore, selecting superior alfalfa cultivars that are non-dormant, winter-hardy, and early flowering would allow for an early spring harvest with enhanced biomass. In this study, we found 25 QTL for TOF, 17 for SY and six QTL for CSB. Three TOF related QTL were stable and four TOF QTL were detected in the corresponding genomic locations of the flowering QTL of M. truncatula , an indication of possible evolutionarily conserved regions. The potential candidate genes for the SNP sequences of QTL regions were identified for all three traits and these genes would be potential targets for further molecular studies. Conclusions This research showed that variation in alfalfa flowering time after spring green up has no association with dormancy levels. Here we reported QTL, markers, and potential candidate genes associated with spring flowering time and biomass yield of alfalfa, which constitute valuable genomic resources for improving these traits via marker-assisted selection (MAS). Electronic supplementary material The online version of this article (10.1186/s12870-019-1946-0) contains supplementary material, which is available to authorized users.
The development of next-generation sequencing (NGS) enabled a shift from array-based genotyping to directly sequencing genomic libraries for high-throughput genotyping. Even though whole-genome sequencing was initially too costly for routine analysis in large populations such as breeding or genetic studies, continued advancements in genome sequencing and bioinformatics have provided the opportunity to capitalize on whole-genome information. As new sequencing platforms can routinely provide high-quality sequencing data for sufficient genome coverage to genotype various breeding populations, a limitation comes in the time and cost of library construction when multiplexing a large number of samples. Here we describe a high-throughput whole-genome skim-sequencing (skim-seq) approach that can be utilized for a broad range of genotyping and genomic characterization. Using optimized low-volume Illumina Nextera chemistry, we developed a skim-seq method and combined up to 960 samples in one multiplex library using dual index barcoding. With the dual-index barcoding, the number of samples for multiplexing can be adjusted depending on the amount of data required, and could be extended to 3,072 samples or more. Panels of doubled haploid wheat lines (Triticum aestivum, CDC Stanley x CDC Landmark), wheat-barley (T. aestivum x Hordeum vulgare) and wheat-wheatgrass (Triticum durum x Thinopyrum intermedium) introgression lines as well as known monosomic wheat stocks were genotyped using the skim-seq approach. Bioinformatics pipelines were developed for various applications where sequencing coverage ranged from 1 × down to 0.01 × per sample. Using reference genomes, we detected chromosome dosage, identified aneuploidy, and karyotyped introgression lines from the skim-seq data. Leveraging the recent advancements in genome sequencing, skim-seq provides an effective and low-cost tool for routine genotyping and genetic analysis, which can track and identify introgressions and genomic regions of interest in genetics research and applied breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.