The cyanobacterial exopolysaccharides (EPSs) are considered as one of the important group of biopolymers having significant ecological, industrial, and biotechnological importance. Cyanobacteria are regarded as a very abundant source of structurally diverse, high molecular weight polysaccharides having variable composition and roles according to the organisms and the environmental conditions in which they are produced. Due to their structural complexity, versatility and valuable biological properties, they are now emerging as high-value compounds. They are possessing exceptional properties and thus are being widely explored for various applications like in food and pharmaceutical industries, in bioremediation for removal of heavy metals, for soil conditioning, as biopolymers, bioadhesives, and bioflocculants. However, poor understanding of their complex structural properties, lack of concrete information regarding the genes encoding the proteins involved in the EPS biosynthetic pathways, their process of production and about the associated factors controlling their structural stability, strongly limits their commercialization and applications in the various fields of biotechnology. Owing to the above context, the present review is aimed to organize the available information on applications of cyanobacterial EPSs in the field of biotechnology and to identify the research gaps for improved industrial utilization and commercialization of these biomaterials.
The wound care market is rapidly expanding due to the development of innumerable dressings that exhibit specific healing requirements for different wound types. The use of biomaterials as suitable wound dressing material is highly advantageous due to their biocompatibility, biodegradability, and non-toxicity. Cyanobacteria have been widely explored for their potential applications in wound healing, as they are the rich source of bioactive compounds with antibacterial, antitumor, antiviral, antioxidant, and antifungal activities. In recent years this group of organisms has been widely studied due to their immense potential in biomedical applications. Although their different bioactivities can support wound healing in different ways, very few forms have proven utility as a wound-healing agent. This chapter gives an insight into the potential of cyanobacteria in wound healing. Different bioactive compounds present in variable forms of cyanobacteria and their associated activities were reported to support tissue regeneration and wound healing acceleration. As the demand for cost-effective, bioactive wound care products is ever increasing, these organisms have immense potential to be utilized for the development of bioactive wound dressings. Hence, various bioactive compounds of cyanobacteria, their associated activities, and roles in wound healing have been briefly reviewed in this chapter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.