The importance of local versus distant forcing is studied for the wind‐driven intra‐seasonal (30–120 day) sea level anomaly (SLA) variations along the west coast of India. Significant correlations of altimeter‐derived SLA on the west coast are found with the mid‐basin SLA east of Sri Lanka and SLA as far as Sumatra and the equator, with increased lags, connecting with the remote forcing from the equator in the form of reflected Rossby waves. The highest correlations between SLA on the west coast and winds are found with the winds at the southern tip of India. Coherence calculations help to identify the importance of a narrow band (40–60 day) for the interactions of winds with the intra‐seasonal SLA variations. A multivariate regression model, along with the coherences within this narrower band, suggest the lags of SLA on the west coast with winds to range from 0 to 2 days with the local forcing to 11–13 days with the forcing along south east coast of India. Hovmöller diagrams illustrate the propagation of signals by estimating phase speed for Rossby waves (57 cm/s) across the Indian Ocean from Sumatra and Coastal Trapped Waves (CTWs) along the west coast of India (178 cm/s). Propagation from the south‐east coast of India is not as robust as Rossby waves from Sumatra.
Tropical Pacific Islands face unknown rates of future warming due to increased greenhouse gas emissions, but almost certain changing climate stresses. Continued global warming is projected to cause further changes to the mean conditions and variability of sea surface temperature (SST), rainfall, and sea surface height (SSH). Previous climate model simulations showed that the equatorial Pacific is likely to have greater increased rainfall, compared to elsewhere in the tropics. There is less certainty about future rainfall changes away from the equator, including around many of the numerous tropical Pacific Islands. Here, we assess the Coupled Model Intercomparison Project‐phase 6 (CMIP6) as it relates to future changes of SST, rainfall, and SSH in the tropical Pacific. Focus is on the island regions of Hawaii, Guam, and American Samoa, as well as the Niño 3.4 region. We consider two development narratives of the 21st century by assessing the SSP2‐4.5 and SSP5‐8.5 experiments, and describe climate changes in the tropical Pacific relative to the recent historical conditions that are likely for either 1.5°C or 3°C of global mean surface temperature (GMST) warming above preindustrial levels. Consistent with prior‐generation climate models, we find that future rainfall increases the most where SST warming is greatest, and also an overall increase of interannual variability associated with the El Niño‐Southern Oscillation (ENSO) affecting rainfall and SSH. We describe changes in SST, rainfall, and SSH for particular warming amounts, and make comparisons with time‐based climate assessments during the 21st century, which are relevant results toward better understanding uncertainty and supporting adaptation efforts in the tropical Pacific Islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.