Abstract:The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ~20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.
A NO 2 gas sensor based on mesoporous WO 3 thin film with low operating temperatures and its sensing characteristics are reported. The mesoporous WO 3 thin film exhibits regular pores with an average pore size of 5 nm and specific surface area of 151 m 2 /g. Excellent sensing properties are found upon exposure to 3 ppm of NO 2 at 35-100°C for mesoporous WO 3 thin film. The sensor response is 180 for 3 ppm NO 2 at 100°C. The ability to sense NO 2 at such low temperatures is attributed to the large surface area ͑151 m 2 /g͒ that offers many active sites for reaction with NO 2 molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.