Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in -mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that -null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in-null cell lines. EZH2 inhibition delayed tumor onset in -null cells and caused regression of-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of , which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.
BackgroundAristolochic acid (AA) is a natural compound found in many plants of the Aristolochia genus, and these plants are widely used in traditional medicines for numerous conditions and for weight loss. Previous work has connected AA-mutagenesis to upper-tract urothelial cell carcinomas and hepatocellular carcinomas. We hypothesize that AA may also contribute to bladder cancer.MethodsHere, we investigated the involvement of AA-mutagenesis in bladder cancer by sequencing bladder tumor genomes from two patients with known exposure to AA. After detecting strong mutational signatures of AA exposure in these tumors, we exome-sequenced and analyzed an additional 11 bladder tumors and analyzed publicly available somatic mutation data from a further 336 bladder tumors.ResultsThe somatic mutations in the bladder tumors from the two patients with known AA exposure showed overwhelming AA signatures. We also detected evidence of AA exposure in 1 out of 11 bladder tumors from Singapore and in 3 out of 99 bladder tumors from China. In addition, 1 out of 194 bladder tumors from North America showed a pattern of mutations that might have resulted from exposure to an unknown mutagen with a heretofore undescribed pattern of A > T mutations. Besides the signature of AA exposure, the bladder tumors also showed the CpG > TpG and activated-APOBEC signatures, which have been previously reported in bladder cancer.ConclusionsThis study demonstrates the utility of inferring mutagenic exposures from somatic mutation spectra. Moreover, AA exposure in bladder cancer appears to be more pervasive in the East, where traditional herbal medicine is more widely used. More broadly, our results suggest that AA exposure is more extensive than previously thought both in terms of populations at risk and in terms of types of cancers involved. This appears to be an important public health issue that should be addressed by further investigation and by primary prevention through regulation and education. In addition to opportunities for primary prevention, knowledge of AA exposure would provide opportunities for secondary prevention in the form of intensified screening of patients with known or suspected AA exposure.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-015-0161-3) contains supplementary material, which is available to authorized users.
Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA‐based device without any surgical intervention or drug injection to relax the external sphincter.
Pelvic floor spasm and associated voiding problems are heterogeneous in their pathogenesis and are therefore often underrecognized and undertreated; it is therefore essential that a therapeutic strategy needs to be personalized to the individual patient's requirements. Therefore, careful evaluation and assessment of individuals using a multidisciplinary team approach including a trained physical therapist/nurse clinician is essential in the management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.