Purpose: Obesity is increasing in prevalence globally, with increased demands placed on radiology departments to image obese patients to assist with diagnosis and management. The aim of this study was to determine perceived best practice techniques currently used in clinical practice for projectional radiography of the abdomen for obese patients with the aim to help elucidate areas for future research and education needs in this field. Experimental Design: A two round e-Delphi study was undertaken to establish a consensus within a reference group of expert Australian clinical educator diagnostic radiographers (CEDRs). Initially, a conceptual map of issues regarding imaging obese patients was undertaken by analysing interview transcripts of 12 CEDRs. This informed an online questionnaire design used in Delphi rounds 1 and 2. A consensus threshold was set <75% ''agreement/disagreement'', with 15 and 14 CEDRs participating in rounds 1 and 2, respectively.Results: Seven of the 11 statements reach consensus after round 2. Consensus on using a combination of higher peak kilovoltage (kVp) and milliampere-seconds (mAs) to increase radiation exposure increased source-to-image distance and tighter collimation was achieved. There was no consensus regarding patient positioning practices or patient communication strategies. The expert group reported the importance of personal confidence and treating patients as individuals when applying techniques.
Introduction: Convolutional neural networks (CNNs) represent a state-of-the-art methodological technique in AI and deep learning, and were specifically created for image classification and computer vision tasks. CNNs have been applied in radiology in a number of different disciplines, mostly outside otolaryngology, potentially due to a lack of familiarity with this technology within the otolaryngology community. CNNs have the potential to revolutionize clinical practice by reducing the time required to perform manual tasks. This literature search aims to present a comprehensive systematic review of the published literature with regard to CNNs and their utility to date in ENT radiology. Methods: Data were extracted from a variety of databases including PubMED, Proquest, MEDLINE Open Knowledge Maps, and Gale OneFile Computer Science. Medical subject headings (MeSH) terms and keywords were used to extract related literature from each databases inception to October 2020. Inclusion criteria were studies where CNNs were used as the main intervention and CNNs focusing on radiology relevant to ENT. Titles and abstracts were reviewed followed by the contents. Once the final list of articles was obtained, their reference lists were also searched to identify further articles. Results: Thirty articles were identified for inclusion in this study. Studies utilizing CNNs in most ENT subspecialties were identified. Studies utilized CNNs for a number of tasks including identification of structures, presence of pathology, and segmentation of tumors for radiotherapy planning. All studies reported a high degree of accuracy of CNNs in performing the chosen task. Conclusion: This study provides a better understanding of CNN methodology used in ENT radiology demonstrating a myriad of potential uses for this exciting technology including nodule and tumor identification, identification of anatomical variation, and segmentation of tumors. It is anticipated that this field will continue to evolve and these technologies and methodologies will become more entrenched in our everyday practice.
BACKGROUND: Pneumatization of the mastoid process is variable and of significance to the operative surgeon. Surgical approaches to the temporal bone require an understanding of pneumatization and its implications for surgical access. This study aims to determine the feasibility of using deep learning convolutional neural network algorithms to classify pneumatization of the mastoid process. Methods: De-identified petrous temporal bone images were acquired from a tertiary hospital radiology picture archiving and communication system. A binary classification mode in the pretrained convolutional neural network was used to investigate the utility of convolutional neural networks in temporal bone imaging. False positive and negative images were reanalyzed by the investigators and qualitatively assessed to consider reasons for inaccuracy. Results: The overall accuracy of the model was 0.954. At a probability threshold of 65%, the sensitivity of the model was 0.860 (95% CI 0.783-0.934) and the specificity was 0.989 (95% CI 0.960-0.999). The positive predictive value was 0.973 (95% CI 0.904-0.993) and the negative predictive value was 0.935 (95% CI 0.901-0.965). The false positive rate was 0.006. The F1 number was 0.926 demonstrating a high accuracy for the model. Conclusion: The temporal bone is a complex anatomical region of interest to otolaryngologists. Surgical planning requires high-resolution computed tomography scans, the interpretation of which can be augmented with machine learning. This initial study demonstrates the feasibility of utilizing machine learning algorithms to discriminate anatomical variation with a high degree of accuracy. It is hoped this will lead to further investigation regarding more complex anatomical structures in the temporal bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.