Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation, including ventral/orbital medial prefrontal cortex (OMPFC) GMV decreases and, more inconsistently, amygdala GMV increases. We aimed to examine OMPFC and amygdala GMV in bipolar disorder, type 1 patients (BPI) versus healthy control participants (HC), and examine potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV. Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age-and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry to first examine main effects of diagnostic group and gender upon whole brain (WB) GMV. Post hoc analyses were subsequently performed to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions demonstrated by the above VBM analyses. Here, SPPSS was used to examine the effects of these variables on magnitude of GMV in these a priori and nona priori regions in BPI versus HC. BPI showed reduced GMV in two regions established a priori: bilateral posteromedial rectal gyrus (PMRG), but no amygdala GMV abnormalities. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low trait anxiety BPI versus male low trait anxiety HC, and in high versus low trait anxiety male BPI. Our findings show in BPI significant effects of male gender and high trait anxiety on GMV reduction in left PMRG, part of the OMPFC medial prefrontal network implicated in visceromotor and emotion regulation.
The ␣2 adrenoceptor antagonist yohimbine (YO) increases transmitter release from adrenergic/noradrenergic (NA) neurons. Systemic YO activates the hypothalamic-pituitary-adrenal (HPA) axis, inhibits feeding, and supports conditioned flavor avoidance (CFA) in rats. To determine whether these effects require NA inputs to the bed nucleus of the stria terminalis (BNST), vehicle or saporin toxin conjugated to an antibody against dopamine  hydroxylase (DSAP) was microinjected bilaterally into the BNST to remove its NA inputs. Subsequent tests failed to reveal any lesion effect on the ability of YO (5.0 mg/kg, i.p.) to inhibit food intake or to support CFA. Conversely, HPA axis responses to YO were significantly blunted in DSAP rats. In a terminal experiment, DSAP and control rats were perfused 90 -120 min after intraperitoneal injection of YO or vehicle. Brains were processed to reveal Fos immunolabeling and lesion extent. NA fibers were markedly depleted in the BNST and medial parvocellular paraventricular hypothalamus (PVNmp) in DSAP rats, evidence for collateralized NA inputs to these regions. DSAP rats displayed significant loss of caudal medullary NA neurons, and markedly blunted Fos activation in the BNST and in corticotropin-releasing hormone-positive PVNmp neurons after YO. We conclude that a population of medullary NA neurons provides collateral inputs to the BNST and PVNmp, and that these inputs contribute importantly to Fos expression and HPA axis activation after YO treatment. Conversely, NA-mediated activation of BNST and PVNmp neurons is unnecessary for YO to inhibit food intake or support CFA, evidence for the sufficiency of other intact neural pathways in mediating those effects.
Objectives Generalized Anxiety Disorder (GAD) is one of the most prevalent mental disorders in the elderly, but its functional neuroanatomy is not well understood. Given the role of emotion dysregulation in GAD, we sought to describe the neural bases of emotion regulation in late-life GAD by analyzing the functional connectivity (FC) in the Salience Network and the Executive Control Network during worry induction and worry reappraisal. Design, setting and participants Twenty-eight elderly GAD and thirty-one non-anxious comparison participants were included. Twelve elderly GAD completed a 12-week pharmacotherapy trial. We used an in-scanner worry script that alternates blocks of worry induction and reappraisal. We assessed network FC, employing the following seeds: anterior insula (AI), dorso-lateral prefrontal cortex (dlPFC), the bed nucleus of stria terminalis (BNST), the paraventricular nucleus (PVN). Results GAD participants exhibited greater FC during worry induction between the left AI and the right orbito-frontal cortex (OFC), and between the BNST and the subgenual cingulate. During worry reappraisal, the non-anxious participants had greater FC between the left dlPFC and the medial PFC, as well as between the left AI and the medial PFC, while elderly GAD had greater FC between the PVN and the amygdala. Following twelve weeks of pharmacotherapy, GAD participants had greater connectivity between the dlPFC and several prefrontal regions during worry reappraisal. Conclusion FC during worry induction and reappraisal points toward abnormalities in both worry generation and worry reappraisal. Following successful pharmacologic treatment, we observed greater connectivity in the prefrontal nodes of the Executive Control Network during reappraisal of worry.
Early life experience differentially shapes later stress reactivity, as evidenced by both animal and human studies. However, early experience-related changes in the function of central visceral neural circuits that control stress responses have not been well characterized, particularly in humans. The paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), amygdala (Amyg) and subgenual anterior cingulate cortex (sgACC) form a core visceral stress-responsive circuit. The goal of this study is to examine how childhood emotional and physical abuse relates to adulthood stressor-evoked activity within these visceral brain regions. To evoke acute states of mental stress, participants (n = 155) performed functional magnetic resonance imaging (fMRI)-adapted versions of the multi-source interference task (MSIT) and the Stroop task with simultaneous monitoring of mean arterial pressure (MAP) and heart rate. Regression analyses revealed that childhood physical abuse correlated positively with stressor-evoked changes in MAP, and negatively with unbiased, a priori extractions of fMRI blood-oxygen level-dependent signal change values within the sgACC, BNST, PVN and Amyg (n = 138). Abuse-related changes in the function of visceral neural circuits may reflect neurobiological vulnerability to adverse health outcomes conferred by early adversity.
Objective Clinical anxiety is prevalent, highly comorbid with other conditions, and associated with significant medical morbidity, disability, and public health burden. Excessive attentional deployment towards threat is a transdiagnostic dimension of anxiety seen at both initial and sustained stages of threat processing. However, group-level observations of these phenomena mask considerable within-group heterogeneity that has been linked to treatment outcomes, suggesting that a transdiagnostic, individual differences approach may capture critical, clinically relevant information. Methods 70 clinically anxious individuals were randomized to receive 8 sessions of Attention Bias Modification (ABM; n=41 included in analysis), a computer-based mechanistic intervention that specifically targets initial stages of threat processing, or a sham control (n=21). Participants completed a mixed block/event-related fMRI task optimized to discriminate transient from sustained neural responses to threat. Results Larger transient responses across a wide range of cognitive-affective regions (e.g., ventrolateral prefrontal cortex, anterior cingulate cortex, amygdala) predicted better clinical outcomes following ABM, in both a priori anatomical regions and whole-brain analyses; sustained responses did not. A spatial pattern recognition algorithm using transient threat responses successfully discriminated the top quartile of ABM responders with 68% accuracy. Conclusions Neural alterations occurring on the relatively transient timescale that is specifically targeted by ABM predict favorable clinical outcomes. Results inform how to expand on the initial promise of neurocognitive treatments like ABM by fine-tuning their clinical indications (e.g., through personalized mechanistic intervention relevant across diagnoses) and by increasing the range of mechanisms that can be targeted (e.g., through synergistic treatment combinations and/or novel neurocognitive training protocols designed to tackle identified predictors of nonresponse).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.