Recent results from diffusion tensor imaging (DTI) studies provide evidence of a ventral-lexical stream and a dorsal-sublexical stream associated with reading processing. We investigated the relationship between behavioural reading speed for stimuli thought to rely on either the ventral-lexical, dorsal-sublexical, or both streams and white matter via fractional anisotropy (FA) and mean diffusivity (MD) using DTI tractography. Participants (N = 32) overtly named exception words (e.g., 'one', ventral-lexical), regular words (e.g., 'won', both streams), nonwords ('wum', dorsal-sublexical) and pseudohomophones ('wun', dorsal-sublexical) in a behavioural lab. Each participant then underwent a brain scan that included a 30-directional DTI sequence. Tractography was used to extract FA and MD values from four tracts of interest: inferior longitudinal fasciculus, uncinate fasciculus, arcuate fasciculus, and inferior fronto-occipital fasciculus. Median reaction times (RTs) for reading exception words and regular words both showed a significant correlation with the FA of the uncinate fasciculus thought to underlie the ventral processing stream, such that response time decreased as FA increased. In addition, RT for exception and regular words showed a relationship with MD of the uncinate fasciculus, such that response time increased as MD increased. Multiple regression analyses revealed that exception word RT accounted for unique variability in FA of the uncinate over and above regular words. There were no robust relationships found between pseudohomophones, or nonwords, and tracts thought to underlie the dorsal processing stream. These results support the notion that word recognition, in general, and exception word reading in particular, rely on ventral-lexical brain regions.
The contralateral effects of unilateral strength training, known as cross-education of strength, date back well over a century. In the last decade, a limited number of studies have emerged demonstrating the preservation or "sparing" effects of cross-education during immobilization. Recently published evidence reveals that the sparing effects of cross-education show muscle site specificity and involve preservation of muscle cross-sectional area. The new research also demonstrates utility of training with eccentric contractions as a potent stimulus to preserve immobilized limb strength across multiple modes of contraction. The cumulative data in nonclinical settings suggest that cross-education can completely abolish expected declines in strength and muscle size in the range of ∼13% and ∼4%, respectively, after 3-4 weeks of immobilization of a healthy arm. The evidence hints towards the possibility that unique mechanisms may be involved in preservation effects of cross-education, as compared with those that lead to functional improvements under normal conditions. Cross-education effects after strength training appear to be larger in clinical settings, but there is still only 1 randomized clinical trial demonstrating the potential utility of cross-education in addition to standard treatment. More work is necessary in both controlled and clinical settings to understand the potential interaction of neural and muscle adaptations involved in the observed sparing effects, but there is growing evidence to advocate for the clinical utility of cross-education.
Migraine is a headache disorder characterized by sensitivity to light and sound. Recent research has revealed abnormal visual-spatial attention in migraineurs in between headache attacks. Here, we ask whether these attentional abnormalities can be attributed to specific regions of the known attentional network to help characterize the abnormalities in migraine. Specifically, the ventral frontoparietal network of attention is involved with assessing the behavioural relevance of unattended stimuli. Given the decreased suppression of unattended stimuli reported in migraineurs, we hypothesized that migraineurs would have abnormal processing in the ventral portion of the frontoparietal network of attention. To address this, we used functional magnetic resonance imaging to assess the attentional control networks during visual spatial-orienting tasks in migraineurs (N = 16) as compared to non-migraine controls (N = 16). We employed two visual orienting paradigms with target discrimination tasks: (1) voluntary orienting to central arrow cues, and (2) reflexive orienting to peripheral flash cues. While both groups showed activation in the key areas of attentional processing networks, migraineurs showed less activation than non-migraine controls in a key area of the ventral frontoparietal network of attention, the right temporal parietal junction (rTPJ), during both voluntary and reflexive visual spatial orienting. Given the role of rTPJ is to assess the visual environment for behaviorally relevant sensory stimuli outside the focus of attention and signal other attentional areas to reorient attention to behaviorally salient stimuli, our findings fit with previous research showing that migraineurs lack suppression of unattended events and have heightened orienting to sudden onset stimuli in peripheral locations.
Imaging and brain stimulation studies seem to correct the classical understanding of how brain networks, rather than contralateral focal areas, control the generation of unimanual voluntary force. However, the scaling and hemispheric-specificity of network activation remain less understood. Using fMRI, we examined the effects of parametrically increasing right-handgrip force on activation and functional connectivity among the sensorimotor network bilaterally with 25%, 50%, and 75% maximal voluntary contractions (MVC). High force (75% MVC) unimanual handgrip contractions resulted in greater ipsilateral motor activation and functional connectivity with the contralateral hemisphere compared to a low force 25% MVC condition. The ipsilateral motor cortex activation and network strength correlated with relative handgrip force (% MVC). Increases in unimanual handgrip force resulted in greater ipsilateral sensorimotor activation and greater functional connectivity between hemispheres within the sensorimotor network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.