<span lang="EN-US">Multilevel inverters have the benefit of producing high output voltage values with little distortion. This paper deals with decreasing total harmonic distortion (THD) and providing an output voltage with various step levels switching devices. In this study, a 27-level inverter with three asymmetric H-Bridge was designed and simulated based on level shift sinusoidal pulse-width modulation and phase shift sinusoidal pulse-width modulation methods. MATLAB/Simulink has been used to create this model and test it at different types of loads. The results showed that a multilevel inverter with (PS-PWM) produces less (THD) than a multilevel with (LS-PWM), when the resistive load was used, the produced voltage and current THD in (PS-PWM) and (LS-PWM) are 3.02% and 4.30% respectively, that has resulted from the linearity between voltage and current in the resistive load. While in the case of applying an inductive load, the THD in the voltage is constant in both (PS-PWM) and (LS-PWM) methods and has the same values as the THD in a resistive load. However, the THD in the current with inductive load decreased to 2.79% in (PS-PWM) and 4.04% in (LS-PWM). Finally, these results show that the performance of the proposed power circuit with PS-PWM is better than (LS-PWM).</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.