Antimony (Sb) electrodes are an ideal anode material for sodium-ion batteries, which are an attractive energy storage system to support grid-level energy storage. These anodes have high thermal stability, good rate performance, and good electronic conductivity, but there are limitations on the fundamental understanding of phases present as the material is sodiated and desodiated. Therefore, detailed investigations of the impact of the structure-property relationships on the performance of Sb electrodes are crucial for understanding how the degradation mechanisms of these electrodes can be controlled. Although significant work has gone into understanding the sodiation/desodiation mechanism of Sb-based anodes, the fabrication method, electrode composition and experimental parameters vary tremendously and there are discrepancies in the reported sodiation/desodiation reactions. Here we report the use of electrodeposition and slurry casting to fabricate Sb composite films to investigate how different fabrication techniques influence observed sodiation/desodiation reactions. We report that electrode fabrication techniques can dramatically impact the sodiation/desodiation reaction mechanism due to mechanical stability, morphology, and composition of the film. Electrodeposition has been shown to be a viable fabrication technique to process anode materials and to study reaction mechanisms at longer lengths scales without the convolution of binders and additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.