This paper demonstrates a simple method to fabricate 3D microchannels and microvasculature at room temperature by direct-writing liquid metal as a sacrificial template. The formation of a surface oxide skin on the low-viscosity liquid metal stabilizes the shape of the printed metal for planar and out-of-plane structures. The printed structures can be embedded in a variety of soft (e.g. elastomeric) and rigid (e.g. thermoset) polymers. Both acid and electrochemical reduction are capable of removing the oxide skin that forms on the metal, which destabilizes the ink so that it withdraws from the encapsulating material due to capillary forces, resulting in nearly full recovery of the fugitive ink at room temperature. Whereas conventional fabrication procedures typically confine microchannels to 2D planes, the geometry of the printed microchannels can be varied from a simple 2D network to complex 3D architectures without using lithography. The method produces robust monolithic structures without the need for any bonding or assembling techniques that often limit the materials of construction of conventional microchannels. Removing select portions of the metal leaves behind 3D metal features that can be used as antennas, interconnects, or electrodes for interfacing with lab-on-a-chip devices. This paper describes the capabilities and limitations of this simple process.
Gallium-based metal alloys have high electrical conductivity in the liquid state at room temperature. These liquid metal conductors inspire unique electronic applications such as reconfigurable circuits and stretchable components with extremely high strain tolerance. Previously, liquid metals have been successfully patterned via direct-writing, yielding metallically conductive features on-demand at room temperature that do not require post-processing, down to a resolution of %10 μm. While most direct-write processes extrude materials from a nozzle via pressure or volumetric displacement, liquid metal is instead printed here by a shear-driven mechanism that occurs when the oxide-coated meniscus of the metal adheres to the printing substrate and is "pulled" from the nozzle at pressures that are well-below that needed to extrude the metal in the absence of shear. Herein, the key operating parameters that enable shear-driven printing of liquid metals including dispensing pressure, choice of substrate, print height, the surrounding environmental conditions, and the speed and acceleration of the print head are elucidated. A guide to the best practices as well as limitations for implementing shear-driven printing of liquid metals at room temperature is provided in these studies.
3-D printing is an emerging technology that has been used primarily on small scales for rapid prototyping, but which could also herald a wider movement towards decentralized, highly customizable manufacturing. Polymers are the most common materials to be 3-D printed today, but there is great demand for a way to easily print metals. Existing techniques for 3-D printing metals tend to be expensive and energy-intensive, and usually require high temperatures or pressures, making them incompatible with polymers, organics, soft materials, and biological materials. Here, we describe room temperature liquid metals as complements to polymers for 3-D printing applications. These metals enable the fabrication of soft, flexible, and stretchable devices. We survey potential room temperature liquid metal candidates and describe the benefits of gallium and its alloys for these purposes. We demonstrate the direct printing of a liquid gallium alloy in both 2-D and 3-D and highlight the structures and shapes that can be fabricated using these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.