Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five-kilobyte-long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79), intron 2 (CYP2D6*80), and intron 5 (CYP2D6*67). A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5′-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B). Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]). Quantitative copy number determination, sequence analyses, and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc), but may also cause results that may interfere with the genotype determination. Detection of hybrid events, “single” and tandem, will contribute to more accurate phenotype prediction from genotype data.
CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan® technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6.
Our study underscores the importance of thoroughly characterizing the genetic make up of unique populations when considering pharmacogenetic testing for individualized therapy.
The prescription patterns of psychotropic drugs in Trinidad revealed the psychiatrists' preferences for traditional psychotropic drugs, the moderate use of anticholinergic drugs, and polypharmacy in some cases, with probable predisposition to adverse drug reactions. Given our results and based on the evaluation of individual patients, consideration should be given to a broader use of the newer antidepressants (SSRIs) and antipsychotics. Unless justified, polypharmacy should be avoided.
A 56-year-old woman who vaccinated as a child with the Bacillus Calmette-Guerin (BCG), now tests positive to the tuberculin skin test (TST) but test negative to the Quantiferon Gold assay. She has no history of tuberculosis contact and is asymptomatic. This dilemma now is, should be treated for tuberculosis or not, based only on the TST results? To prevent these falsepositive results with TST and avoid treatment with isoniazid (INH) it may be helpful to use interferon-gamma release assay (IGRA) instead, which unlike the TB skin test is not affected by prior BCG vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.