Continued legislative pressure to reduce NO x emissions from diesel engine combustion systems generates a desire for cycle-by-cycle emissions data, with a view to their use in a feedback control strategy, perhaps in conjunction with an exhaust catalytic reactor. While NO x sensors that provide fast, robust, reliable, and continuous measurements in a diesel exhaust at a reasonable price are currently the subject of much development, the present work focuses on an indirect approach. This has led to the development of a semi-empirical model that can be used to estimate NO x emissions, based on more easily measured input data, primarily in the form of instantaneous in-cylinder pressure as a function of crank angle. The model computations are based on fundamental thermodynamic principles, but key empirical constants have been derived with the aid of statistical techniques. The approach taken relied on the availability of an extensive bank of experimental data from three different designs of direct injection diesel engine, each utilizing common rail type fuel injection systems and, in some cases, with the use of multiple injections per cycle.and application of the model to different engines, david.timoney@ucd.ie and thus a generic multizone model has to date not ‡ Now at: Departamento de Tecnología, Universitat Jaume 1, been identified. Also, as the number of model zones increases, so too does the computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.