Mitochondrial DNA sequence data were obtained for eight species of flightless Galapaganus endemic weevils and one winged close relative in order to study their colonization history and modes of diversification in the Galápagos Archipelago. Contrary to most other insular radiations, the phylogeny estimates we recovered for Galapaganus do not follow the progression rule of island biogeography. The penalized likelihood age estimates of colonization of the archipelago exceed the age of the emerged islands and underscore the potential role of now sunken seamounts for the early evolution of Galapaganus. The phylogeny proposes one intra-island origin for Galapaganus endemics, but monophyly tests suggest a larger contribution of in-situ speciation on older islands. Generalist habitat preferences were reconstructed as ancestral while shifts to highland habitats were reconstructed as having evolved independently on different islands. Magnitudes and patterns of diversification rate were found to differ between older and younger islands. Our analyses reveal that the colonization sequence of islands and timing of colonization of Galapaganus could be linked with the geological and volcanic history of the islands in a rather complex scenario. Even though most islands appear to have been colonized soon after their emergence, there are notable deviations from the pattern of sequential colonization expected under the progression rule when considering only the extant emerged islands. Patterns of diversification rate variation on older and younger islands correspond to the volcanic activity or remnants of such activity, while the pattern of independent evolution of restricted habitat preferences in different islands suggests that habitat shifts could also have contributed to species diversity in Galapaganus.
Successful invasive species can overcome or circumvent the potential genetic loss caused by an introduction bottleneck through a rapid population expansion and admixture from multiple introductions. We explore the genetic makeup and the timing of a species introduction to Santa Cruz Island in the Galápagos archipelago. We investigate the presence of processes that can maintain genetic diversity in populations of the broad-nosed weevil Galapaganus howdenae howdenae. Analyses of combined genotypes for 8 microsatellite loci showed evidence of past population size reductions through moment and likelihood-based estimators. No evidence of admixture through multiple introductions was found, but substantial current population sizes (N0 298, 95% credible limits 50-2300), genetic diversity comparable with long-established endemics (Mean number of alleles = 3.875), and lack of genetic structure across the introduced range (F ST = 0.01359) could suggest that foundations are in place for populations to rapidly recover any loss of genetic variability. The time estimates for the introduction into Santa Cruz support an accidental transfer during the colonization period (1832-1959) predating the spurt in human population growth. Our evaluation of the genetic status of G. h. howdenae suggests potential for population growth in addition to our field observations of a concurrent expansion in range and feeding preferences towards protected areas and endemic host plants.
Nuclear sequence data were collected from endemic Galápagos species and an introduced close relative, and contrasted with mitochondrial DNA sequences, continuing investigation into the colonization history and modes of diversification in the weevil genus Galapaganus. The current combined phylogeny together with previously published penalized likelihood age estimates builds a complex picture of the archipelago's colonization history. The present reconstruction relies on submerged platforms to explain the early divergence of the young southern Isabela endemics or the Españ ola or San Cristobal populations. Diversity is later built through inter-island divergence starting on older islands and continuing on two simultaneous tracks towards younger islands. The amount of diversity generated through intra-island processes is skewed towards older islands, suggesting that island age significantly influences diversity. Phylogenetic concordance between nuclear and mitochondrial datasets and well-supported monophyletic species in mitochondrial derived topologies appear to reject the possibility of inter-species hybridization. These clear species boundaries might be related to the tight host associations of adult weevils in discrete ecological zones. If shared hosts facilitate hybridization, then host-or habitat-promoted divergences could prevent it, even in the case of species that share islands, since the altitudinal partitioning of habitats minimizes range overlap.
The challenge of maintaining genetic diversity within populations can be exacerbated for island endemics if they display population dynamics and behavioral attributes that expose them to genetic drift without the benefits of gene flow. We assess patterns of the genetic structure and demographic history in 27 populations of 9 species of flightless endemic Galápagos weevils from 9 of the islands and 1 winged introduced close relative. Analysis of mitochondrial DNA reveals a significant population structure and moderately variable, though demographically stable, populations for lowland endemics (F(ST) = 0.094-0.541; π: 0.014-0.042; Mismatch P = 0.003-0.026; and D((Tajima)) = -0.601 to 1.203), in contrast to signals of past contractions and expansions in highland specialists on 2 islands (Mismatch P = 0.003-0.026 and D((Tajima)) = -0.601 to 1.203). We interpret this series of variable and highly structured population groups as a system of long-established, independently founded island units, where structuring could be a signal of microallopatric differentiation due to patchy host plant distribution and poor dispersal abilities. We suggest that the severe reduction and subsequent increase of a suitably moist habitat that accompanied past climatic variation could have contributed to the observed population fluctuations in highland specialists. We propose the future exploration of hybridization between the introduced and highland endemic species on Santa Cruz, especially given the expansion of the introduced species into the highlands, the sensitivity to past climatic variation detected in highland populations, and the potentially threatened state of single-island endemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.