Summary Four poly(ADP-ribose) polymerase (PADPRP) inhibitors [3-aminobenzamide, benzamide, 3,4-dihydro-5-methoxyisoquinolin-1(2H)-one (PD 128763) and 8-hydroxy-2-methylquinazolin-4(3H)-one (NU1025)] were compared with respect to their effects on a number of biological end points. The following parameters were assessed: their ability to inhibit the enzyme in permeabilised L1210 cells; their ability to potentiate the cytotoxicity of temozolomide (including the cytotoxicity of the compounds per se); their ability to increase net levels of temozolomide-induced DNA strand breaks and inhibit temozolomide-induced NAD depletion. PD 128763 and NU1025 were equipotent as PADPRP inhibitors, and 40-and 50-fold more potent than benzamide and 3-aminobenzamide respectively. All the compounds acted in a concentration-dependent manner to potentiate the cytotoxicity and increase DNA strand break levels in cells treated with temozolomide. There was an excellent correlation between the potency of the compounds as PADPRP inhibitors and their effects on cell survival and DNA repair. Temozolomide treatment caused a decrease in cellular NAD levels, and this was abolished by the PADPRP inhibitors. In conclusion, the new generation of PADPRP inhibitors are at least 50-fold more effective than 3-aminobenzamide as chemopotentiators, and can be used at micromolar rather than millimolar concentrations in intact cells.
Clinical studies concerning the role of poly(ADP-ribose) polymerase (PARP) in the repair of drug- and radiation-induced DNA damage have been impeded by the poor solubility, lack of potency, and limited specificity of currently available inhibitors. A series of 2-alkyl- and 2-aryl-substituted 8-hydroxy-, 8-methoxy-, and 8-methylquinazolin-4(3H)-ones has been synthesized and evaluated for PARP inhibitory activity in permeabilized L1210 murine leukemia cells. 8-Methoxy- and 8-methylquinazolinones (14-34) were readily prepared by acylation of 3-substituted anthranilamides with the appropriate acid chloride, followed by base-catalyzed cyclization. The requisite 8-hydroxyquinazolinones (6, 35-39) were synthesized by demethylation of the corresponding 8-methoxyquinazolinones with BBr3. N-Methylation of 8-methoxy-2-methylquinazolinone (15) with MeI, followed by O-demethylation by BBr3, afforded the control N3-methylquinazolinones 42 and 43, respectively. In general, an 8-hydroxy or 8-methyl substituent enhanced inhibitory activity in comparison with an 8-methoxy group. 2-Phenylquinazolinones were marginally less potent than the corresponding 2-methylquinazolinones, but the introduction of an electron-withdrawing or electron-donating 4'-substituent on the 2-aryl ring invariably increased potency. This was particularly evident in the 8-methylquinazolinone series (IC50 values 0.13-0.27 microM), which are among the most potent PARP inhibitors reported to date. N3-Methylquinazolinones 42 and 43 were essentially devoid of activity (IC50 values > 100 microM). In studies with L1210 cells in vitro, a concentration of 200 microM 8-hydroxy-2-methylquinazolinone (6, NU1025) (IC50 value 0.40 microM) potentiated the cytotoxicity of the monomethylating agent 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide and gamma-radiation 3.5- and 1.4-fold, respectively, at the 10% survival level.
The World Health Organization's definition of anaemia is a haemoglobin level of less than 13g/dL for men and less than 12g/dL for women. Haemoglobin levels have been shown to decline with age, making anaemia a relatively common problem among older people. Because of this fall in haemoglobin with age, there has been some debate about whether an age-related reference range should be used. However, most clinicians believe that, because of the association between anaemia and increased risk of morbidity, mortality and hospitalization, the normal haemoglobin range should not be lowered for older people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.