Understanding the role and underlying regulation mechanism of autophagy in lipopolysaccharide-induced lung injury (LPS-LI) may provide potentially new pharmacological targets for treatment of acute lung injury. The aim of this study was to investigate the functional significance of autophagy in LPS-LI. The autophagy of human pulmonary microvascular endothelial cells (HPMVECs) and mice was inhibited before they were challenged with LPS. In vitro, permeability, vitality, and the LDH release rate of the cells were detected, the zonula occluden-1 (ZO-1) expression and the stress fiber formation were determined. In vivo, the lung injury was assessed. We found LPS caused high permeability and increased lactate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.