Over the last decade, due to exponential growth in IoT devices and weak security mechanisms, the IoT is now facing more security challenges than ever before, especially botnet malware. There are many security solutions in detecting botnet malware on IoT devices. However, detecting IoT botnet malware, particularly multi-architecture botnets, is challenging. This paper proposes a graphically structured feature extraction mechanism integrated with reinforcement learning techniques in multi-architecture IoT botnet detection. We then evaluate the proposed approach using a dataset of 22849 samples, including actual IoT botnet malware, and achieve a detection rate of 98.03 with low time consumption. The proposed approach also achieves reliable results in detecting the new IoT botnet (has a new architecture-processor) not appearing in the training dataset at 96.69. To promote future research in the field, we share relevant datasets and source code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.