To explore the effect of nanoindentation temperature on the plastic deformation of 3C-SiC, it is possible to analyze the 3C-SiC load-displacement changes at different temperatures and the dislocation propagation in the plastic deformation stage. The 3C-SiC nanoindentation model is established on the basis of molecular dynamics interatomic interaction potential. The model combines the 3C-SiC crystal structure to optimize the Vashishta potential function and modifies the relaxation system, system boundary, and other simulated environmental factors. The plastic deformation process of 3C-SiC at different temperatures is analyzed from multiple angles such as the load-displacement curve, the stress distribution during the plastic deformation stage of the matrix, and the formation and growth of specimen dislocations. During the pressing process, intermolecular dislocations and stress are concentrated in the elastic-plastic deformation zone. The load value of the elastic-plastic deformation zone under high temperature environment is generally higher, and the energy of the dislocation loop will be released. In the plastic deformation zone, the dislocation loop will break under the action of high temperature environmental load. The premature release of energy will cause the load value to drop. During the pressing process, the bearing capacity of 3C-SiC polycrystalline will decrease as the temperature rises. Plastic deformation occurs inside the material, and dislocations nucleate and expand from the grain boundary to the crystal and finally form a U-shaped dislocation ring.
To address the problem of feature texture loss in defective images of zirconia bearing balls on unbalanced illumination backgrounds, a coupled algorithm of the local gamma function transform-block interpolation balancing equation is designed. A combination of a light reflection imaging model and a three-dimensional Gaussian surround function is used to extract the illumination estimate of the original image. Subsequent illumination balance correction is performed in the value color space. The contrast between the edges of the feature texture and the background is analyzed to construct a locally adaptive gamma function transformation model. We establish local block interpolation balance equations to eliminate the effects caused by illumination that is too high or too low. The experimental results show that the information entropy of the images after illumination correction changes in the range of 5% or less. The standard deviation and mean gradient can be increased by 15.21% and 14.78%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.