GlyT2 (SLC6A5), two glycine-specific transporters coupled to 2:1 and 3:1 Na+:Cl-, respectively. However, ATB0,+ stoichiometry that specifies its driving force and electrogenicity remains unsettled. Using the reversal potential slope method, here we demonstrate that ATB0,+-mediated glycine transport is coupled to 3 Na+ and 1 Cl- and has a charge coupling of 2.1 e/glycine. ATB0,+ behaves as a unidirectional transporter with limited e and exchange capabilities. Analysis and computational modeling of the pre-steady-state charge movement reveal higher sodium affinity of the apo-ATB0,+, and a locking trap preventing Na+ loss at depolarized potentials. A 3 Na+/ 1 Cl- stoichiometry substantiates ATB0;+ concentrative-uptake and trophic role in cancers and rationalizes its structural proximity with GlyT2 despite their divergent substrate specificity.
Analysis and computational modeling of the pre-steady-state charge movement reveal higher sodium affinity of the apo-ATB0,+, and a locking trap preventing Na+ loss at depolarized potentials.
A 3 Na+/ 1 Cl- stoichiometry substantiates ATB0,+ concentrative-uptake and trophic role in cancers and rationalizes its structural proximity with GlyT2 despite their divergent substrate specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.