In this paper, a novel deep neural network-based energy prediction algorithm for accurately forecasting the day-ahead hourly energy consumption profile of a residential building considering occupancy rate is proposed. Accurate estimation of residential load profiles helps energy providers and utility companies develop an optimal generation schedule to address the demand. Initially, a comprehensive multi-criteria analysis of different machine learning approaches used in energy consumption predictions was carried out. Later, a predictive micro-grid model was formulated to synthetically generate the stochastic load profiles considering occupancy rate as the critical input. Finally, the synthetically generated data were used to train the proposed eight-layer deep neural network-based model and evaluated using root mean square error and coefficient of determination as metrics. Observations from the results indicated that the proposed energy prediction algorithm yielded a coefficient of determination of 97.5% and a significantly low root mean square error of 111 Watts, thereby outperforming the other baseline approaches, such as extreme gradient boost, multiple linear regression, and simple/shallow artificial neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.