SUMMARY Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment.
Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN.
Despite recent advances in antibiotic therapy and intensive care, sepsis is still considered to be the most common cause of death in intensive care units. Excessive production of reactive oxygen species plays an important role in the pathogenesis of sepsis. Recently, it has been suggested that molecular hydrogen (H2) exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radicals (*OH, the most cytotoxic reactive oxygen species) and effectively protects against organ damage induced by I/R. Therefore, we hypothesized that H2 treatment had a beneficial effect on sepsis. In the present study, we found that H2 inhalation starting at 1 and 6 h after cecal ligation and puncture (CLP) or sham operation significantly improved the survival rate of septic mice with moderate or severe CLP in a concentration- and time-dependent manner. Furthermore, moderate or severe CLP mice showed significant multiple organ damage characterized by the increases of lung myeloperoxidase activity, wet-to-dry weight ratio, protein concentration in bronchoalveolar lavage, serum biochemical parameters, and organ histopathologic scores at 24 h after CLP operation, which was significantly attenuated by 2% H2 treatment. In addition, we found that the beneficial effects of H2 treatment on sepsis and sepsis-associated organ damage were associated with the decreased levels of oxidative product, increased activities of antioxidant enzymes, and reduced levels of high-mobility group box 1 in serum and tissue. Thus, H2 inhalation may be an effective therapeutic strategy for patients with sepsis.
Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our and other studies have found that hydrogen gas (H₂) treatment can ameliorate the lung injury induced by sepsis, ventilator, hyperoxia, and ischemia-reperfusion. However, the molecular mechanisms by which H₂ ameliorates lung injury remain unclear. In the current study, we investigated whether H₂ or hydrogen-rich saline (HS) could exert protective effects in a mouse model of ALI induced by intratracheal administration of lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway-mediated inflammation and apoptosis. Two percent of H₂ was inhaled for 1 h beginning at 1 and 6 h after LPS administration, respectively. We found that LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology and histologic scores, wet-to-dry weight ratio, and oxygenation index (PaO₂/FIO₂), as well as total protein in the bronchoalveolar lavage fluid (BALF), which was attenuated by H₂ treatment. Hydrogen gas treatment inhibited LPS-induced pulmonary early and late NF-κB activation. Moreover, H₂ treatment dramatically prevented the LPS-induced pulmonary cell apoptosis in LPS-challenged mice, as reflected by the decrease in TUNEL (deoxynucleotidyl transferase dUTP nick end labeling) staining-positive cells and caspase 3 activity. Furthermore, H₂ treatment markedly attenuated LPS-induced lung neutrophil recruitment and inflammation, as evidenced by downregulation of lung myeloperoxidase activity, total cells, and polymorphonuclear neutrophils in BALF, as well as proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, interleukin 6, and high-mobility group box 1) and chemokines (keratinocyte-derived chemokine, macrophage inflammatory protein [MIP] 1α, MIP-2, and monocyte chemoattractant protein 1) in BALF. In addition, i.p. injection of 10 mL/kg hydrogen-rich saline also significantly attenuated the LPS-induced ALI. Collectively, these results demonstrate that molecular hydrogen treatment ameliorates LPS-induced ALI through reducing lung inflammation and apoptosis, which may be associated with the decreased NF-κB activity. Hydrogen gas may be useful as a novel therapy to treat ALI. munosorbent assay; H₂-hydrogen gas; HMGB1-high-mobility group box 1; HS-hydrogen-rich saline; i.t.-intratracheal; KC-keratinocyte-derived chemokine; LPS-lipopolysaccharide; MCP-1-monocyte chemoattractant protein 1; MIP-1α-macrophage inflammatory protein 1α; MIP-2-macrophage inflammatory protein 2; MPO-myeloperoxidase; PBS-phosphate-buffered saline; PMNs-polymorphonuclear neutrophils; TUNEL-deoxynucleotidyl transferase dUTP nick end labeling; W/D-wet-to-dry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.