Today's Internet and enterprise networks are so popular as they can easily provide multimedia and ecommerce services to millions of users over the Internet in our daily lives. Since then, security has been a challenging problem in the Internet's world. That issue is called Cyberwar, in which attackers can aim or raise Distributed Denial of Service (DDoS) to others to take down the operation of enterprises Intranet. Therefore, the need of applying an Intrusion Detection System (IDS) is very important to enterprise networks. In this paper, we propose a smarter solution to detect network anomalies in Cyberwar using Stacking techniques in which we apply three popular machine learning models: k-nearest neighbor algorithm (KNN), Adaptive Boosting (AdaBoost), and Random Decision Forests (RandomForest). Our proposed scheme uses the Logistic Regression method to automatically search for better parameters to the Stacking model. We do the performance evaluation of our proposed scheme on the latest data set NSLKDD 2019 dataset. We also compare the achieved results with individual machine learning models to show that our proposed model achieves much higher accuracy than previous works.
Control flow-based feature extraction method has the ability to detect malicious code with higher accuracy than traditional text-based methods. Unfortunately, this method has been encountered with the NP-hard problem, which is infeasible for the large-sized and high-complexity programs. To tackle this, we propose a control flow-based feature extraction dynamic programming algorithm for fast extraction of control flow-based features with polynomial time O($N^{2}$), where N is the number of basic blocks in decompiled executable codes. From the experimental results, it is demonstrated that the proposed algorithm is more efficient and effective in detecting malware than the existing ones. Applying our algorithm to an Internet of Things dataset gives better results on three measures: Accuracy = 99.05%, False Positive Rate = 1.31% and False Negative Rate = 0.66%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.