Disruption of the intestinal epithelial barrier, that involves the activation of C‐Jun N‐terminal kinase (JNK), contributes to initiate and accelerate inflammation in inflammatory bowel disease. Metformin has unexpected beneficial effects other than glucose‐lowering effects. Here, we provided evidence that metformin can protect against intestinal barrier dysfunction in colitis. We showed that metformin alleviated dextran sodium sulphate (DSS)‐induced decreases in transepithelial electrical resistance, FITC‐dextran hyperpermeability, loss of the tight junction (TJ) proteins occludin and ZO‐1 and bacterial translocation in Caco‐2 cell monolayers or in colitis mice models. Metformin also improved TJ proteins expression in ulcerative colitis patients with type 2 diabetes mellitus. We found that metformin ameliorated the induction of colitis and reduced the levels of pro‐inflammatory cytokines IL‐6, TNF‐a and IL‐1β. In addition, metformin suppressed DSS‐induced JNK activation, an effect dependent on AMP‐activated protein kinase α1 (AMPKα1) activation. Consistent with this finding, metformin could not maintain the barrier function of AMPKα1‐silenced cell monolayers after DSS administration. These findings highlight metformin protects against intestinal barrier dysfunction. The potential mechanism may involve in the inhibition of JNK activation via an AMPKα1‐dependent signalling pathway.
The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI.
Disordered intestinal flora and discordant immune response are associated with the development of ulcerative colitis (UC). Recent work has described the ability of macrophages to undergo repolarization toward a proinflammatory M1 or anti-inflammatory M2 phenotype in response to particular bacterium-derived signals.
Fusobacterium nucleatum
(
F. nucleatum, Fn
) is a species of intestinal commensal bacteria with potential pathogenicity, but its association with UC and how it may contribute to progression of UC is largely unknown. In this study, we provide new evidence that
F. nucleatum
accumulated heavily in the intestine of UC patients and was accompanied by the secretion of IFN-γ and the skewing of M1 macrophages. Mechanistically, our data showed that
F. nucleatum
aggravated dextran sodium sulfate (DSS)-induced colitis in the production of Th1-related cytokines IFN-γ through the AKT2 signaling pathway
in vitro
and
in vivo
. To further confirm the disease-relevance of these shifts in macrophage repolarization in response to
F. nucleatum
, stimulated bone marrow-derived macrophages (BMDMs) were transferred into recipient mice with DSS colitis. This transfer resulted in increased disease activity and inflammatory cytokine production. Taken together, we show clearly that
F. nucleatum
can promote the progression of UC via proinflammatory M1 macrophage skewing, and targeting
F. nucleatum
or AKT2 signaling may be a viable means of blocking development of UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.