4The naturally occurring wildfires and the peoplerelated forest fires are events, which in many cases have significant impact on the environment, the wildlife and the human population. The most devastating among these events usually start in unpopulated remote areas, which are difficult to inspect or are not constantly being monitored or observed. This gives the local small-sized fires enough time to evolve into fullscale wide-area disasters, which in turn makes their suppression and extinguishing very difficult.In this paper, we present an autonomous system for early detection of forest fires, named THEASIS-M. The presented system represents a solution that is based on a combination of innovative technologies, including computer vision algorithms, artificial intelligence and unmanned aerial vehicles.In the first part of the study, we provide an overview on the present applications of the UAVs in the forestry domain. The paper then introduces the general architecture of the THEASIS-M system and its components. The system itself is fully autonomous and is based on several different types of UAVs, including a fixedwing drone, which provides the overall forest monitoring capabilities of the proposed solution, and a rotary-wing UAV that is used for confirmation and monitoring of the detected fire event. The widely used technologies for computer vision and image processing, which are used for the detection of fire and smoke in the realtime video streams sent from the UAVs to the ground control station, are highlighted in the next section of this study. Finally, the experimental tests and demonstrations of the proposed THEASIS-M system are presented and briefly discussed.Index Terms4Unmanned aerial vehicles, computer vision, artificial intelligence, early detection of forest fires, autonomous system for fire detections
4This paper presents an innovative development of a flying robot or an aerial robot, with a flexible manipulator, called the Dexterous Aerial Robotic System (DFTS), for aerial manipulations, especially for inspections and reparations of various structures such as wind turbines, power lines and open gas pipelines, decorations and painting of high industrial chimneys and walls of high buildings, as well as transport and delivery of courier shipments, relocation and manipulation of assemblies and units in inaccessible or dangerous environments. The proposed DFTS consists of two independent but interconnected systems or functional units, which have two main separate functions respectively, including a basic carrying function, and a precise positioning and stabilization function. The system with a basic carrying function is actually the main flying system, the unmanned aerial vehicle (UAV); it is remotely controlled and piloted. Meanwhile, the aerial manipulation platform, called the vertical take-off and landing platform VTOL, which is an active flying platform with 6 degrees of freedom (DOF) is used for positioning and stabilization; and it is attached to the UAV via the soft link. With the use of a long soft link, the problems which are caused by the air turbulent flows generated by the UAV are minimized, and the aerial manipulations of objects are safely controlled and operated. The VTOL which is equipped with a grasping mechanism was successfully developed, prototyped and tested. The experimental results showed that, the developed VTOL can self-stabilize with the inclination angle of being up to 8 degrees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.