The requirement for energy is increasing worldwide as populations and economies develop. Reasons for this increase include global warming, climate change, an increase in electricity demand, and paucity of fossil fuels. Therefore, research in renewable energy technology has become a central topic in recent studies. In this study, a solar-assisted house heating system with a seasonal underground thermal energy storage tank is proposed based on the reference system to calculate the insulation thickness effect, the collector area, and an underground storage tank volume on the system performance according to real weather conditions at Jeju Island, South Korea. For this purpose, a mathematical model was established to calculate its operating performance. This mathematical model used the thermal response factor method to calculate the heat load and heat loss of the seasonal underground thermal energy storage tank. The results revealed that on days with different weather conditions, namely, clear weather, intermittent clouds sky, and overcast sky, the obtained solar fraction was 45.8%, 17.26%, and 0%, respectively. Using this method, we can save energy, space, and cost. This can then be applied to the solar-assisted house heating system in South Korea using the seasonal underground thermal energy storage tank.
The present work investigates the exergy and effective efficiency of the multi-pass solar air collector with longitudinal fins by analysis approach and multi-objective optimization. The effect of 0.01-0.02 kg/s air flow rate, 15-35 mm collector depth, 1-3 m collector length, and 24.21-30.67 mm fin pitch was considered. The optimization was analyzed by the Preference Selection Index (PSI) method, with three maximum criteria: thermal efficiency, effective efficiency, and exergy efficiency. Mathematical models were solved by EES software. Results indicated that the multi-pass (TPLF and DPLF) type was better than the SPWF type by three criteria. The highest exergy efficiency of the TPLF and DPLF types was 6.696% and 5.636%. The greatest effective efficiency of the TPLF and DPLF types was 69.09% and 66.17%. Furthermore, the optimization results indicated that the three efficiency criteria of the DPLF type were 58.38%, 58.22%, and 4.491% for the best case; the three efficiency criteria of the TPLF type were 60.97%, 60.85%, and 5.439% for the best case. The worst configuration was the model with a short collector length, large collector depth, and large fin pitch. The collector efficiency decreased with decreased fin pitch for the configuration with the large collector length, short collector depth, and high mass flow rate.
The main aim of this paper is to present experimental results concerning the effects of the temperature and velocity of drying air on the flavonoids extraction rate of houttuynia cordata thunb by heat pump dryer under real weather conditions at Ho Chi Minh City, Vietnam. Drying experiments were carried out at the drying air temperature of 35, 40, 45 and 50 °C, and drying air velocity of 1.0, 1.5, 2.0 and 2.5 m/s, respectively. The experimental results showed that the highest amount of flavonoid extraction rate of the houttuynia cordata thunb was 87.525 mg/g corresponding to the drying air temperature of 45 °C and drying air velocity of 2.0 m/s. The aim also involves analyzing the effects of the drying temperature and drying velocity on the drying time, moisture content, and the specific moisture extraction rate (SMER).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.