Nghiên cứu xử lý nhận dạng hình ảnh thu được từ hệ thống camera trên cơ sở các thuật toán trí tuệ nhân tạo (Aritificial Inteligence -AI) nhằm chuyển các trạm quan trắc mực nước thủ công thành các trạm quan trắc mực nước tự động. Đồng thời kết hợp công nghệ thông tin nhằm thu thập, kết nối dữ liệu quan trắc mực nước từ các trạm thủy văn để tăng cường số lượng và chất lượng dữ liệu cung cấp cho các mô hình dự báo thủy văn. Nghiên cứu này đáp ứng yêu cầu chuyển đổi số, tự động hóa các trạm quan trắc thủ công thành các trạm tự động trên cơ sở các công trình chuyên môn hiện có, đồng thời tiết kiệm được nguồn nhân lực tại các trạm khí tượng thủy văn; giải quyết bài toán thiếu hụt nhân sự, khó khăn trong việc tuyển dụng nhân lực cho các trạm theo vị trí việc làm. Từ khóa: Camera; Khí tượng thủy văn; Trí tuệ nhân tạo; AI.
Hiện nay có khá nhiều các công cụ dự báo trong lĩnh vực khí tượng thủy văn có thể áp dụng cho mô phỏng và dự báo ngập lụt đô thị. Tuy nhiên hầu hết các phần mềm này thường là phần mềm thương mại, đơn lẻ chưa có sự đồng bộ. Mặt khác công tác dự báo, cảnh báo mưa lớn, ngập lụt của Thành phố Hồ Chí Minh (TPHCM) chưa có sự liên kết thành hệ thống nên thời gian đưa bản tin cảnh báo mưa lớn, ngập lụt có độ chễ, chưa đủ độ tin cậy và tương tác với người dân chậm. Trong khi đó, việc ứng dụng AI trong dự báo ngập lụt cũng đang được nghiên cứu và đưa vào thực hiện tại nhiều thành phố lớn trên thế giới. Bài báo giới thiệu việc xây dựng hệ thống cảnh báo sớm ngập lụt trên địa bàn thành phố Hồ Chí Minh trên cơ sở ứng dụng công nghệ thông tin trên nền tảng GIS (hệ thống thông tin địa lý) và ứng dụng nền tảng trí tuệ nhân tạo (AI) nhằm đảm bảo công tác dự báo, cảnh báo ngập lụt kịp thời, chính xác, theo hướng dự báo ngắn hạn để chủ động phòng tránh, ứng phó với ngập lụt, chia sẻ thông tin trên kho dữ liệu dùng chung của Thành phố, cho phép chính quyền và người dân truy cập một cách thuận lợi thông tin cảnh báo ngập theo thời gian thực tại TP.HCM. Hệ thống cảnh báo sớm ngập lụt đã được thử nghiệm trong 3 tháng 9,10 và 11 của năm 2021 trên địa bàn Thành phố Thủ Đức, với kết quả khá tốt (hệ số R 2 > 0,8).Từ khóa: Nền tảng trí tuệ nhân tạo (AI); Hệ thống cảnh báo sớm, ngập lụt; TP.HCM; MIKE URBAN, MIKE FLOOD.
Số liệu ra đa thời tiết là nguồn số liệu rất hữu hiệu được sử dụng để phân tích và dự báo thời tiết, đặc biệt là trong việc cảnh báo hạn cực ngắn phục vụ dự báo. Việc sử dụng hiệu quả và kịp thời số liệu radar sẽ mang lại ý nghĩa rất lớn. Do đó, nghiên cứu xây dựng công cụ ước lượng mưa bằng công nghệ trí tuệ nhận tạo (AI) trong việc sử dụng số liệu radar vào dự báo mưa hạn cực ngắn. Mô hình Convolutional Neural Networks (CNN) với cơ sở Rainet được dùng để tính toán và ước lượng mưa từ ảnh radar Nhà Bè, với dữ liệu các tháng mùa mưa từ tháng 5 đến tháng 11 năm 2019 và năm 2020 dùng để huấn luyện mô hình. Nghiên cứu đã áp dụng số liệu năm 2021 để kiểm nghiệm kết quả. Đánh giá các trường hợp cho thấy khả năng ước lượng mưa của công cụ là tương đối tốt về khả năng xảy ra mưa; về lượng mưa đa phần nhỏ hơn so với thực tế, tuy nhiên, sai số cũng không quá lớn.
Tóm tắt: Vệ tinh Himawari 8 là thế hệ vệ tinh mới nhất của Nhật Bản, bao gồm 16 kênh phổ. Việc phân tích các kênh phổ mang lại nhiều thông tin phục vụ cho công tác phân tích, dự báo, cảnh báo mưa-dông. Nghiên cứu này trình bày kết quả nghiên cứu xây dựng công cụ trợ giúp công tác cảnh báo, dự báo mưa-dông cho khu vực Đồng bằng sông Cửu Long (ĐBSCL). Các tiện ích được tích hợp trong công cụ sử dụng nguồn số liệu 16 kênh phổ ảnh vệ tinh Himawari phân tích, tính toán: phân loại mây (Ci, Sc, St, Cu, Cb..), xác định nhiệt độ và độ cao đỉnh mây, xác định vùng mây dông, xác định vùng mây có khả năng sinh mưa, tính toán sự di chuyển của các khối mây Cb. Công cụ cũng tính toán các số liệu phân tích và dự báo cho các vùng địa lý (đơn vị hành chính), đồng thời cung cấp tiện ích chuyển phát thông tin cảnh báo, dự báo thời hạn đến 6h một cách nhanh chóng và hiệu quả nhất.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.