Purpose To conduct a prospective observational study across 12 U.S. hospitals to evaluate real-time performance of an interpretable artificial intelligence (AI) model to detect COVID-19 on chest radiographs. Materials and Methods A total of 95 363 chest radiographs were included in model training, external validation, and real-time validation. The model was deployed as a clinical decision support system, and performance was prospectively evaluated. There were 5335 total real-time predictions and a COVID-19 prevalence of 4.8% (258 of 5335). Model performance was assessed with use of receiver operating characteristic analysis, precision-recall curves, and F1 score. Logistic regression was used to evaluate the association of race and sex with AI model diagnostic accuracy. To compare model accuracy with the performance of board-certified radiologists, a third dataset of 1638 images was read independently by two radiologists. Results Participants positive for COVID-19 had higher COVID-19 diagnostic scores than participants negative for COVID-19 (median, 0.1 [IQR, 0.0–0.8] vs 0.0 [IQR, 0.0–0.1], respectively; P < .001). Real-time model performance was unchanged over 19 weeks of implementation (area under the receiver operating characteristic curve, 0.70; 95% CI: 0.66, 0.73). Model sensitivity was higher in men than women ( P = .01), whereas model specificity was higher in women ( P = .001). Sensitivity was higher for Asian ( P = .002) and Black ( P = .046) participants compared with White participants. The COVID-19 AI diagnostic system had worse accuracy (63.5% correct) compared with radiologist predictions (radiologist 1 = 67.8% correct, radiologist 2 = 68.6% correct; McNemar P < .001 for both). Conclusion AI-based tools have not yet reached full diagnostic potential for COVID-19 and underperform compared with radiologist prediction. Keywords: Diagnosis, Classification, Application Domain, Infection, Lung Supplemental material is available for this article. . © RSNA, 2022
Objective Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. “Personalized” FL variations have been developed to counter data heterogeneity, but few have been evaluated using real-world healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client federated model using a previously described COVID-19 diagnostic model. Additionally, to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations. Materials and Methods We leverage a FL healthcare collaborative including data from 5 international healthcare systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diagnosis system using the FedAvg algorithm implemented on Clara Train SDK 4.0. To study the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated. We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN, FedAMP). Results We observed comparable model performance with respect to internal validation (local model: AUROC 0.94 vs FedAvg: 0.95, p = 0.5) and improved model generalizability with the FedAvg model (p < 0.05). When investigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personalized FL algorithms. On average, FedBN had the best rank performance on internal and external validation. Conclusion FedAvg can significantly improve the generalization of the model compared to other personalization FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to develop both internal and externally validated algorithms.
Importance: An artificial intelligence (AI)-based model to predict COVID-19 likelihood from chest x-ray (CXR) findings can serve as an important adjunct to accelerate immediate clinical decision making and improve clinical decision making. Despite significant efforts, many limitations and biases exist in previously developed AI diagnostic models for COVID-19. Utilizing a large set of local and international CXR images, we developed an AI model with high performance on temporal and external validation. Objective: Investigate real-time performance of an AI-enabled COVID-19 diagnostic support system across a 12-hospital system. Design: Prospective observational study. Setting: Labeled frontal CXR images (samples of COVID-19 and non-COVID-19) from the M Health Fairview (Minnesota, USA), Valencian Region Medical ImageBank (Spain), MIMIC-CXR, Open-I 2013 Chest X-ray Collection, GitHub COVID-19 Image Data Collection (International), Indiana University (Indiana, USA), and Emory University (Georgia, USA) Participants: Internal (training, temporal, and real-time validation): 51,592 CXRs; Public: 27,424 CXRs; External (Indiana University): 10,002 CXRs; External (Emory University): 2002 CXRs Main Outcome and Measure: Model performance assessed via receiver operating characteristic (ROC), Precision-Recall curves, and F1 score. Results: Patients that were COVID-19 positive had significantly higher COVID-19 Diagnostic Scores (median .1 [IQR: 0.0-0.8] vs median 0.0 [IQR: 0.0-0.1], p < 0.001) than patients that were COVID-19 negative. Pre-implementation the AI-model performed well on temporal validation (AUROC 0.8) and external validation (AUROC 0.76 at Indiana U, AUROC 0.72 at Emory U). The model was noted to have unrealistic performance (AUROC > 0.95) using publicly available databases. Real-time model performance was unchanged over 19 weeks of implementation (AUROC 0.70). On subgroup analysis, the model had improved discrimination for patients with severe as compared to mild or moderate disease, p < 0.001. Model performance was highest in Asians and lowest in whites and similar between males and females. Conclusions and Relevance: AI-based diagnostic tools may serve as an adjunct, but not replacement, for clinical decision support of COVID-19 diagnosis, which largely hinges on exposure history, signs, and symptoms. While AI-based tools have not yet reached full diagnostic potential in COVID-19, they may still offer valuable information to clinicians taken into consideration along with clinical signs and symptoms.
I have never seen one who loves virtue as much as he loves beauty," Confucius once said. If beauty is more important as goodness, it becomes clear why people invest so much effort in their first impression. The aesthetic of faces has many aspects and there is a strong correlation to all characteristics of humans, like age and gender. Often, research on aesthetics by social and ethic scientists lacks sufficient labelled data and the support of machine vision tools. In this position paper we propose the Aesthetic-Faces dataset, containing training data which is labelled by Chinese and German annotators. As a combination of three image subsets, the AF-dataset consists of European, Asian and African people. The research communities in machine learning, aesthetics and social ethics can benefit from our dataset and our toolbox. The toolbox provides many functions for machine learning with state-of-the-art CNNs and an Extreme-Gradient-Boosting regressor, but also 3D Morphable Model technologies for face shape evaluation and we discuss how to train an aesthetic estimator considering culture and ethics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.