Automated learning analytics is becoming an essential topic in the educational area, which needs effective systems to monitor the learning process and provides feedback to the teacher. Recent advances in visual sensors and computer vision methods enable automated monitoring of behavior and affective states of learners at different levels, from university to pre-school. The objective of this research was to build an automatic system that allowed the faculties to capture and make a summary of student behaviors in the classroom as a part of data acquisition for the decision making process. The system records the entire session and identifies when the students pay attention in the classroom, and then reports to the facilities. Our design and experiments show that our system is more flexible and more accurate than previously published work.
Face recognition (FR) has received considerable attention in the field of security, especially in the use of closed-circuit television (CCTV) cameras in security monitoring. Although significant advances in the field of computer vision are made, advanced face recognition systems provide satisfactory performance only in controlled conditions. They deteriorate significantly in the face of real-world scenarios such as lighting conditions, motion blur, camera resolution, etc. This article shows how we design, implement, and conduct the empirical comparisons of machine learning open libraries in building attendance taking (AT) support systems using indoor security cameras called ATSS. Our trial system was deployed to record the appearances of 120 students in five classes who study on the third floor of FPT Polytechnic College building. Our design allows for flexible system scaling, and it is not only usable for a school but a generic attendance system with CCTV. The measurement results show that the accuracy is suitable for many different environments.
This article investigates the effects of banking integration on banking competition in the ASEAN‐6 countries. Using a data set of 3217 bank‐year observations over the period 1996–2018, our main results indicate that: (i) banking openness positively affects banking competition; (ii) the overall degree of balanced (in/out) integration leads to greater market power; and (iii) the increase in the market monopoly following the participation of foreign banks can be reduced by good regulatory policies. These results remain intact when two alternative competition measures are employed and when a polynomial model and a threshold model are used to reveal the non‐linear and heterogeneous effects of banking integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.