Wiping jet impingement pressure is important in controlling the coating mass (thickness) and influencing the smoothness of the thin metallic coating produced in continuous galvanizing lines (CGLs). However, the fluctuation of the impingement pressure profile that directly impacts the coating smoothness has not been adequately understood. To study key features of the impingement pressure fluctuation, the instantaneous impingement pressure profiles obtained from Large Eddy Simulations were analyzed using Proper Orthogonal Decomposition (POD). Dominant fluctuation modes of pressure profiles can be differentiated from the energy contents of the modes corresponding to different jet types namely mixing, non-mixing, and transitional mixing jet. The dominant modes of mixing jets in the wiping region contain comparable strength of all modes (flapping, pulsing, and out-of-phase multi pulsing). Non-mixing jets do not show discernable fluctuation modes and transitional mixing jets show pulsing and flapping modes only. Additionally, instantaneous maximum pressure gradient and their location were determined from the reduced-order reconstruction of the pressure profiles. From the analysis, frequency spectra of the magnitude and location fluctuations of the maximum pressure gradients associated with each of the jet types can be clearly distinguished. This is a knowledge that may be helpful for CGL operators in the operation of wiping jets.
In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.
Smoothness of thin metallic coated strip produced in continuous galvanizing lines is influenced by fluctuations of the impinging wiping pressure. In this paper, vortex dynamics e.g. vortex production frequency and mixing of jet opposing shear layer vortices; and impinging pressure were numerically studied by Large Eddy Simulation (LES). The effects of jet nozzle width, d, and operational parameters (nozzle to strip distance, H, and mean jet velocity, U o) were investigated. Vortex production rate is almost linearly correlated to U o and mixing of shear layer vortices occurs when H/d ≥ 6. Dominant frequencies of impinging pressure fluctuation are significantly different between the two possible phenomena of i) Mixing of opposing shear layer vortices prior to jet impingement on the strip, or ii) No mixing of opposing shear layer vortices prior to jet impingement. The impinging pressure of a jet characterised by mixing of vortices is predominantly composed of frequencies lower than 10 kHz with the most significant components at less than 1 kHz. In contrast, for a jet with non-mixing of vortices, the impinging pressure fluctuations are comprised of frequencies greater than 10 kHz and the dominant frequency is approximately one half the vortex production frequency. Utilising existing model results for the coating thickness response to pressure and shear stress fluctuations 12) the anticipated degree of coating thickness sensitivity to the mixing and nonmixing impinging jet cases of the present work has been elucidated. It is shown that a mixed vortices jet is most likely to cause surface ripples in the coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.