Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) significantly improve the outcome of non-small-cell lung cancer (NSCLC) patients with EGFR mutations, however, most TKI-treated patients will develop resistance to TKIs. β-elemene, extracted from Curcuma aromatica Salisb., has been widely used to treat various malignant tumors, including TKI-resistant NSCLC, but, the effects and the molecular mechanisms remain unclear. In this study, the NCI-H1975 cell line harboring double mutations L858R/T790M was treated with varying concentrations of β-elemene and/or erlotinib. The effects of β-elemene on cell proliferation, migration, apoptosis, and the expression of relevant proteins of NCI-H1975 cells were evaluated. The results revealed that β-elemene significantly inhibited the growth, colony formation capacity, wound healing ability of NCI-H1975 cells, and improved the sensitivity of NCI-H1975 cells to erlotinib. Compared with erlotinib alone, β-elemene plus erlotinib significantly promoted the apoptosis of NCI-H1975 cells, accompanied by the down-regulated expression of P-mTOR, P-EGFR, CHOP proteins and up-regulated expression of P-AMPKα and Bax proteins. Taken together, these findings demonstrate that β-elemene suppresses the proliferation and migration of TKI-resistant H1975 cells, and enhances the antitumor activity of erlotinib by inducing apoptosis through AMPK and MAPK pathways in TKI-resistant H1975 lung cancer cells, indicating that β-elemene is a promising anti-cancer therapeutic candidate for TKI-resistant NSCLC.
Iodine (I) is an essential trace element that can influence animal health and productivity. In this study, we investigated the effects of dietary iodine on the antioxidant indices of organ (liver and thyroid gland) and messenger RNA (mRNA) expression of glutathione peroxidase (GSH-Px) in Rex rabbits. A total of 120 4-month-old Rex rabbits (2235.4 ± 13.04 g BW) were divided into four equal groups, and their diets were supplemented with iodine (0, 0.2, 2, or 4 mg/kg dry matter (DM)). The iodine concentration in basal diet (control group) was 0.36 mg/kg DM. In most of measured parameters, supplemental iodine exerted no significant effect. Growth and slaughter performance and organ weight were not influenced significantly by iodine supplementation. Serum T was significantly lower in 2-mg I group than in 0.2 and 4-mg I groups (P < 0.05). Superoxide dismutase (SOD), GSH-Px, methane dicarboxylic aldehyde (MDA), and thyroperoxidase (TPO) in the serum and liver were not influenced (P > 0.05). Conversely, serum catalase (CAT) was significantly reduced (P < 0.05). In the thyroid, GSH-Px was higher in the 2-mg I group than in the 0.2- and 4-mg I groups (P < 0.05). RT-PCR results showed that the mRNA expression level of GSH-Px in the liver was not significantly influenced (P > 0.05). In the thyroid gland, the mRNA expression level of GSH-Px was higher in the 2-mg I group than in the 4-mg I group (P < 0.05), which agreed with the activity of GSH-Px. In conclusion, iodine supplementation exerted no effect on the performance and antioxidant capacity of the body, but dietary iodine influenced serum T or GSH-Px in the thyroid gland. Thus, on the basis of serum T and GSH-Px levels in the thyroid gland, we hypothesized that GSH-Px secretion was increased by adding dietary iodine in the thyroid, which may inhibit the HO generation and further influence the thyroid hormone synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.