Magnetorheological (MR) fluid containing guar gum was prepared for the first time by ball-milling the guar gum powder together with silicone oil and carbonyl iron powder. By forming a coating layer over the ground carbonyl iron powder, the guar gum improves the sedimentation stability and thixotropy of the MR fluid effectively.
In this paper we present a novel approach for producing obvious strengthening of the magnetorheological (MR) effect of MR fluids. Carbonyl iron powders coated with guar gum were used as magnetic particles in the MR fluid. Experimental results showed that inducing a guar gum coating not only greatly improved the sedimentation stability but also strengthened the yield stress of the MR fluid. An intermolecular force based model was proposed for explaining the strengthening effect.
The paper analyzes the influence of structural parameters on the electrical performance of the microstructured environmentally-friendly electrical contact material Ag/SnO2 by using numerical simulation method.The numerical results show that the reisitivity of fiber-like electrical contact material Ag/SnO2 is significantly reduced compared with the resistivity of Ag/SnO2 adding reinforcing nanoparticles in the traditional way.So the fiber-like electrical contact material Ag/SnO2 exhibits higher conductivity in macro. On further analysis, we learn that the resistivity of fibrous electrical contact materials is related to weight percent of reinforced phase, and micro-structural parameter of length to diameter ratio. The resistivity increases as weight percent of reinforced phase increases,and decreases non-linearly with micro-structural parameter of length to diameter ratio increasing.This demonstrates that numerical simulation is one of effective methods for analysis of the electrical performance of the microstructured electrical contact material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.