We present a study of static and dynamic interfacial properties of self-assembled polyelectrolyte complex nanoparticles (size 110-120 nm) containing entrapped surfactant molecules at a fluid/fluid interface. Surface tension vs time measurements of an aqueous solution of these polyelectrolyte complex nanoparticles (PCNs) show a concentration-dependent biphasic adsorption to the air/water interface while interfacial microrheology data show a concentration-dependent initial increase in the surface viscosity (up to 10(-7) N·m/s), followed by a sharp decrease (10(-9) N·m/s). Direct visualization of the air/water interface shows disappearance of particles from the interface over time. On the basis of these observations, we propose that the PCNs at fluid/fluid interfaces exist in two states: initial accumulation of PCNs at the air/water interface as nanoparticles, followed by interface induced disassembly of the accumulated PCNs into their components. The lack of change in particle size, charge, and viscosity of the bulk aqueous solution of PCNs with time indicates that this disintegration of the self-assembled PCNs is an interfacial phenomenon. Changes in energy encountered by the PCNs at the interface lead to instability of the self-assembled system and dissociation into its components. Such systems can be used for applications requiring directed delivery and triggered release of entrapped surfactants or macromolecules at fluid/fluid interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.