Silver nanoparticles (AgNPs) were successfully prepared by -rays irradiation of solution containing 1.0-10 mM of silver nitrate and 1% chitosan. The optical characteristics and particles sizes of AuNPs were determined by UV-Vis spectra and TEM images, respectively. The size of AgNPs increased by the increase of silver concentration or the decrease of chitosan molecular weight in irradiated solution. The in vitro test showed that AgNPs inhibited the growth of Corynespora cassiicola on rubber-leaf extract media with the inhibitory efficiency of 52.1-100% by treatment of AgNPs with particle size from 15 to 5 nm, respectively. In addition, antifungal activity was found to reach ∼100% by the addition of 90 ppm AgNPs. The in vivo foliar treatment of AgNPs on 9-month-old rubber plants showed that the treatment with 2.5-12.5 ppm AgNPs on tested plants after inoculation by spraying with C. cassiicola spores enhanced the rate of non-disease-infected plants from 6.0 to 93.3%, respectively, compared to the untreated control. The inhibition effect of AgNPs on fungal growth of C. cassiicola mycelial was also elucidated via SEM images. The AgNPs/chitosan synthesized by -irradiation is potentially promising to use as a fungicidal product for treating C. cassiicola, a serious pathogen fungus on rubber trees.
In this study, silver nanoparticles (AgNPs) were prepared by gamma rays irradiation of 1.0, 2.5, 5.0 and 10 mM silver nitrate solution using chitosan as a stabilizer. UV spectra, morphology and size of AgNPs irradiated at different doses were characterized by using UV-vis spectrophotometer and TEM images. The obtained results indicated that the average size of AgNPs increased by the increase of silver concentration in irradiated solution or the degree of acetylation of chitosan, while the increase of chitosan concentration was found to be a functional key for reducing the average size of particles in AgNPs product. In vitro test, AgNPs inhibited the growth of Corynespora cassiicola. In particularly, the inhibitory efficiency of AgNPs on the growth of C. cassiicola on rubber leaf extract media increased from 52.1 to 100 % when the average particle size of particles in AgNPs product decreased from 15 to 5 nm at the concentration of 50 ppm. In addition, the increase of AgNPs concentration from 10 to 90 ppm also enhanced the antifungal activity to be from 6.3 to 100 %, respectively. It suggests that the silver nanoparticles/chitosan (AgNPs/chitosan) synthesized by γ-rays irradiation method is a very promising fungicidal product applying for treating C. cassiicola, a serious pathogen fungus on rubber trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.