Mô hình chuỗi thời gian mờ là một trong những công cụ được sử dụng để giải quyết quá trình phức tạp và không chắc chắn. Trong quá trình thiết lập mô hình chuỗi thời gian mờ, độ chính xác dự báo phụ thuộc vào hai vấn đề chính: (1) Phân khoảng và xác định độ dài khoảng dữ liệu hiệu quả, (2) Thiết lập các mối quan hệ mờ hợp lý cho dự báo. Trong nghiên cứu này, một mô hình dự báo chuỗi thời gian mờ mới sử dụng kỹ thuật phân cụm dựa trên đồ thị để xác định độ dài khoảng khác nhau được đề xuất. Mô hình đề xuất được áp dụng trên hai tập dữ liệu chuỗi thời gian, dữ liệu lịch sử về số lượng tuyển sinh đại học tại Đại học Alabama và dữ liệu về đỉnh muối của một tỉnh ven biển Việt Nam. Kết quả tính toán cho thấy, mô hình đề xuất có độ chính xác dự báo cao hơn các mô hình hiện có khi áp dụng cho hai tập dữ liệu cụ thể.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.