In recent years, a wide variety of fuzzy time series (FTS) forecasting models have been created and recommended to handle the complicated and ambiguous challenges relating to time series data from real-world sources. However, the accuracy of a model is problem-specific and varies across data sets. But a model’s precision varies between different data sets and depends on the situation at hand. Even though many models assert that they are better than statistics and a single machine learning-based model, increasing forecasting accuracy is still a challenging task. In the fuzzy time series models, the size of the intervals and the fuzzy relationship groups are thought to be crucial variables that affect the model’s forecasting abilities. This study offers a hybrid FTS forecasting model that makes use of both the graph-based clustering technique (GBC) and particle swarm optimization (PSO) for adjusting interval lengths in the universe of discourse (UoD). The suggested model’s forecasting results have been compared to those provided by other current models on a dataset of enrollments at the University of Alabama. For all orders of fuzzy relationships, the suggested model outperforms its counterparts in terms of forecasting accuracy.
In recent years, a wide variety of fuzzy time series (FTS) forecasting models have been created and recommended to handle the complicated and ambiguous challenges relating to time series data from real-world sources. However, the accuracy of a model is problem-specific and varies across data sets. But a model’s precision varies between different data sets and depends on the situation at hand. Even though many models assert that they are better than statistics and a single machine learning-based model, increasing forecasting accuracy is still a challenging task. In the fuzzy time series models, the size of the intervals and the fuzzy relationship groups are thought to be crucial variables that affect the model’s forecasting abilities. This study offers a hybrid FTS forecasting model that makes use of both the graph-based clustering technique (GBC) and particle swarm optimization (PSO) for adjusting interval lengths in the universe of discourse (UoD). The suggested model’s forecasting results have been compared to those provided by other current models on a dataset of enrollments at the University of Alabama. For all orders of fuzzy relationships, the suggested model outperforms its counterparts in terms of forecasting accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.