A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites.
In this study, a novel method has been proposed for synthesizing amorphous GeO2/C composites. The amorphous GeO2/C composite without carbon black as an electrode for Li-ion batteries exhibited a high specific capacity of 914 mA h g(-1) at the rate of C/2 and enhanced rate capability. The amorphous GeO2/C electrode exhibited excellent electrochemical stability with a 95.3% charge capacity retention after 400 charge-discharge cycles, even at a high current charge-discharge of C/2. Furthermore, a full cell employing the GeO2/C anode and the LiCoO2 cathode displayed outstanding cycling performance. The superior performance of the GeO2/C electrode enables the amorphous GeO2/C to be a potential anode material for secondary Li-ion batteries.
A composite of Si nanoparticles and a two dimensional porous conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) metal–organic framework (MOF), namely Si/Ni3(HITP)2, is suggested as a potential anode material for Li-ion batteries.
Here, we propose a simple method for direct synthesis of a Si@SiC composite derived from a SiO@C precursor via a Mg thermal reduction method as an anode material for Li-ion batteries. Owing to the extremely high exothermic reaction between SiO and Mg, along with the presence of carbon, SiC can be spontaneously produced with the formation of Si. The synthesized Si@SiC was composed of well-mixed SiC and Si nanocrystallites. The SiC content of the Si@SiC was adjusted by tuning the carbon content of the precursor. Among the resultant Si@SiC materials, the Si@SiC-0.5 sample, which was produced from a precursor containing 4.37 wt % of carbon, exhibits excellent electrochemical characteristics, such as a high first discharge capacity of 1642 mAh g and 53.9% capacity retention following 200 cycles at a rate of 0.1C. Even at a high rate of 10C, a high reversible capacity of 454 mAh g was obtained. Surprisingly, at a fixed discharge rate of C/20, the Si@SiC-0.5 electrode delivered a high capacity of 989 mAh g at a charge rate of 20C. In addition, a full cell fabricated by coupling a lithiated Si@SiC-0.5 anode and a LiCoO cathode exhibits excellent cyclability over 50 cycles. This outstanding electrochemical performance of Si@SiC-0.5 is attributed to the SiC phase, which acts as a buffer layer that stabilizes the nanostructure of the Si active phase and enhances the electrical conductivity of the electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.