In recent years, iris recognition has been emerged as one of the most popular biometric techniques because it guarantees high universality, distinctiveness, permanence, collectability, performance, acceptability, circumvention. In the paper we propose an improved system for iris recognition with high accuracy by fusing curvelet and dual tree complex wavelet transform. In our system, the main features are extracted from pre-processed/normalized iris images using both curvelet and Dual Tree Complex Wavelet Transform (DTCWT) tranforms. After performing different classifiers independently, all the results are fused to get final classification in the decision level to increase the accuracy of system. Finally, the random forest classifier and CATIA dataset are used to measure the performance of the proposed method. The experimental results show that the technique of the paper based on fusion of the curvelet and DTCWT is promising when compared with other existing similar techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.