Introduction: Semiconductor-based surface-enhanced Raman scattering (SERS) substrates with high stability and reproducibility have become one of the essential analytical tools in the analysis of chemical and biological at trace levels. Herein, a growth of the hexagonal-wrapped ZnO nanorod arrays decorating with Ag nanoparticles (AgNPs) at different concentrations of Ag was proposed.
Methods: The crystallinity, morphology, chemical composition, and optical properties of the prepared samples were investigated by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Raman system, respectively.
Results: The results revealed that the SERS performance of ZnO NRs incorporating with AgNPs exhibited higher detection of crystal violet (CV) probe molecules at a low concentration of 108 M than that of the pristine ZnO NRs. This effect originates from the localized surface plasmonic resonance of AgNPs that could cause a strong electromagnetic field and synergistic effects of Ag, ZnO, and CV molecules in ZnONRs@Ag/CV SERS system.
Conclusion: These outcomes reveal that AgNPs play a crucial role in enhanced SERS performance for chemical and biological detection of ZnO substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.