This paper studies the classification of unbalanced data sets. First, this kind of data sets is briefly introduced, and then the classification methods of unbalanced data sets are analyzed in detail from different perspectives such as data sampling method, algorithm level, feature level, cost-sensitive function, and deep learning. In addition, the data sampling methods are divided into different technologies for introduction: unbalanced data set classification method based on synthetic minority over-sampling technology (SMOTE), support vector machine (SVM) technology, and k-nearest neighbor (KNN) technology, etc. Then, the advantages and disadvantages of these methods are compared. Finally, the evaluation criteria of the unbalanced data set classifier are summarized, and the future work directions are prospected and summarized.
School bullying is a serious problem among teenagers. School violence is one type of school bullying and considered to be the most harmful. As AI (Artificial Intelligence) techniques develop, there are now new methods to detect school violence. This paper proposes a video-based school violence detecting algorithm. This algorithm first detects foreground moving targets via the KNN (K-Nearest Neighbor) method and then preprocesses the detected targets via morphological processing methods. Then, this paper proposes a circumscribed rectangular frame integrating method to optimize the circumscribed rectangular frame of moving targets. Rectangular frame features and optical-flow features were extracted to describe the differences between school violence and daily-life activities. We used the Relief-F and Wrapper algorithms to reduce the feature dimension. SVM (Support Vector Machine) was applied as the classifier, and 5-fold cross validation was performed. The accuracy was 89.6%, and the precision was 94.4%. To further improve the recognition performance, we developed a DT–SVM (Decision Tree–SVM) two-layer classifier. We used boxplots to determine some features of the DT layer that are able to distinguish between typical physical violence and daily-life activities and between typical daily-life activities and physical violence. For the remainder of activities, the SVM layer performed a classification. For this DT–SVM classifier, the accuracy reached 97.6%, and the precision reached 97.2%, thus showing a significant improvement.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. www.econstor.eu The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public. Terms of use: Documents in D I S C U S S I O N P A P E R S E R I E SIZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.IZA Discussion Paper No. 8771 January 2015 ABSTRACTThe Inequality-Growth Plateau *We examine the (potentially nonlinear) relationship between inequality and growth using a method which does not require an a priori assumption on the underlying functional form. This approach reveals a plateau completely missed by commonly used (nonlinear) parametric approaches -the economy first expands rapidly with a large decline in inequality, plateaus when inequality remains relatively stable, and then decreases rapidly with a large increase in inequality. This novel finding helps reconcile the conflicting results in the literature (using different parametric assumptions and datasets) and has important policy implications.JEL Classification: C5, C14, O4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.