The utilization of photocatalytic techniques for achieving light‐to‐fuel conversion is a promising way to ease the shortage of energy and degradation of the ecological environment. Fluorescent metallacycles and metallacages have drawn considerable attention and have been used in widespread fields due to easy preparation and their abundant functionality including photocatalysis. This review covers recent advances in photocatalysis in discrete supramolecular fluorescent metallacycles and metallacages. The developments in the utilization of the metallacycles skeletons and the effect of fluorescence‐resonance energy transfer for photocatalysis are discussed. Furthermore, the use of the ligands decorated by organic chromophores or redox metal sites in metallacages as photocatalysts and their ability to encapsulate appropriate catalytic cofactors for photocatalysis are summarized. For the sake of brevity, macrocycles and cages with inorganic coordination complexes such as ruthenium complexes and iridium complexes are not included in this minireview.
A highly efficient strategy for the supramolecular self‐assembly of well‐defined metallacages in microdroplets through continuous‐flow microfluidic devices is described by Lin Xu and co‐workers in their Research Article (e202301900). The strategy adds a highly efficient approach to the toolbox of metallacage self‐assembly.
Developing a new strategy to improve the selfassembly efficiency of functional assemblies in a confined space and construct hybrid functional materials is a significant and fascinating endeavor. Herein, we present a highly efficient strategy for achieving the supramolecular self-assembly of well-defined metallacages in microdroplets through continuous-flow microfluidic devices. The high efficiency and versatility of this approach are demonstrated by the generation of five representative metallacages in different solvents containing water, DMF, acetonitrile, and methanol in a few minutes with nearly quantitative yields, in contrast to the yields obtained with the hour-scale reaction time in a batch reactor. A ring-opening catalytic reaction of the metallacages was selected as a model reaction for exploring supramolecular catalysis in microdroplets, whereby the catalytic yield was enhanced by 2.22-fold compared to that of the same reaction in the batch reactor. This work illustrates a new promising approach for the self-assembly of supramolecular systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.