Nitrogen, as a limited nutrient in Karst rocky desertification areas, is of great significance in terms of ecological restoration measures and social and economic development. Based on the China national knowledge infrastructure and the Web of Science Core Collection, the current literature on soil nitrogen in Karst rocky desertification areas was reviewed and organized, and CiteSpace, a reference analysis tool, was used to visually present and analyse this research. The countries, institutions, authors, keywords and research hotspots in this field were reviewed, and the current status and trends in the evolution of related research were summarized.
Nitrogen, as a crucial limiting nutrient in terrestrial ecosystems, plays a vital role in determining land quality. Heavy metals, as drivers of soil substance transformation, are important indicators for assessing ecosystem function. Currently, the relationship between soil nitrogen and heavy metals in karst desertification areas remains unclear. Therefore, this study focuses on the soil of grassland, forest, and agroforestry ecosystems in a karst desertification area to investigate the relationship between heavy metals and nitrogen distribution using ecological stoichiometry. The findings revealed the following: (i) Total nitrogen (TN) and available nitrogen (AN) exhibited the trend of agroforestry * > forest > grassland, while soil microbial biomass nitrogen (SMBN) showed the trend of forest * > grassland * >> agroforestry; (ii) Chromium (Cr), Ferrum (Fe), Niccolum (Ni), and Plumbum (Pb) showed the trend of agroforestry * > grassland > forest, while Cuprum (Cu) demonstrated the trend of agroforestry > grassland > forest, and Zincum (Zn) exhibited the trend of grassland > forest * >> agroforestry. The Nemerow comprehensive pollution index were 0.77 for grassland, 0.69 for forest, and 0.94 for agroforestry; (iii) The sensitivity of soil nitrogen and heavy metals ranked as grassland > agroforestry > forest. The research findings aim to provide a scientific reference for karst desertification control, ecological protection and restoration, and enhancement of ecosystem function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.