BackgroundDiabetes case finding based on structured medical records does not fully identify diabetic patients whose medical histories related to diabetes are available in the form of free text. Manual chart reviews have been used but involve high labor costs and long latency.ObjectiveThis study developed and tested a Web-based diabetes case finding algorithm using both structured and unstructured electronic medical records (EMRs).MethodsThis study was based on the health information exchange (HIE) EMR database that covers almost all health facilities in the state of Maine, United States. Using narrative clinical notes, a Web-based natural language processing (NLP) case finding algorithm was retrospectively (July 1, 2012, to June 30, 2013) developed with a random subset of HIE-associated facilities, which was then blind tested with the remaining facilities. The NLP-based algorithm was subsequently integrated into the HIE database and validated prospectively (July 1, 2013, to June 30, 2014).ResultsOf the 935,891 patients in the prospective cohort, 64,168 diabetes cases were identified using diagnosis codes alone. Our NLP-based case finding algorithm prospectively found an additional 5756 uncodified cases (5756/64,168, 8.97% increase) with a positive predictive value of .90. Of the 21,720 diabetic patients identified by both methods, 6616 patients (6616/21,720, 30.46%) were identified by the NLP-based algorithm before a diabetes diagnosis was noted in the structured EMR (mean time difference = 48 days).ConclusionsThe online NLP algorithm was effective in identifying uncodified diabetes cases in real time, leading to a significant improvement in diabetes case finding. The successful integration of the NLP-based case finding algorithm into the Maine HIE database indicates a strong potential for application of this novel method to achieve a more complete ascertainment of diagnoses of diabetes mellitus.
IMPORTANCE How to appropriately care for patients who become PCR-negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still not known.Patients who have recovered from coronavirus disease 2019 (COVID-19) could profoundly impact the health care system if a subset were to be PCR-positive again with reactivated SARS-CoV-2.OBJECTIVE To characterize a single center COVID-19 cohort with and without recurrence of PCR positivity, and develop an algorithm to identify patients at high risk of retest positivity after discharge to inform health care policy and case management decision-making.
DESIGN, SETTING, AND PARTICIPANTSA cohort of 414 patients with confirmed SARS-CoV-2 infection, at The Second Affiliated EXPOSURES Polymerase chain reaction (PCR) and IgM-IgG antibody confirmed SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES Univariable and multivariable statistical analysis of the clinical, laboratory, radiologic image, medical treatment, and clinical course of admission/quarantine/readmission data to develop an algorithm to predict patients at risk of recurrence of PCR positivity.RESULTS 16.7% (95CI: 13.0%-20.3%) patients retest PCR positive 1 to 3 times after discharge, despite being in strict quarantine. The driving factors in the recurrence prediction model included: age, BMI; lowest levels of the blood laboratory tests
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.