Ene reductases from the Old Yellow Enzyme (OYE) family reduce the C=C double bond in α,β‐unsaturated compounds bearing an electron‐withdrawing group, for example, a carbonyl group. This asymmetric reduction has been exploited for biocatalysis. Going beyond its canonical function, we show that members of this enzyme family can also catalyze the formation of C−C bonds. α,β‐Unsaturated aldehydes and ketones containing an additional electrophilic group undergo reductive cyclization. Mechanistically, the two‐electron‐reduced enzyme cofactor FMN delivers a hydride to generate an enolate intermediate, which reacts with the internal electrophile. Single‐site replacement of a crucial Tyr residue with a non‐protic Phe or Trp favored the cyclization over the natural reduction reaction. The new transformation enabled the enantioselective synthesis of chiral cyclopropanes in up to >99 % ee.
Processing oriented metal–organic frameworks (MOFs) as thin films is a key challenge for their application to device fabrication. However, typical fabrication methods cannot generate precisely oriented crystals on commercially relevant scales (i.e., cm2). This limits access to applications that require anisotropic functional properties (e.g., separation, optics, and electronics). Currently, highly oriented copper‐based MOFs are synthesized via the addition of the organic MOF component to an ethanolic solution of manually aligned Cu(OH)2 nanobelt films. In this work, the optimization of a semi‐automatic method for the fabrication of precisely oriented MOF films that affords a 100% yield of high quality ceramic films at the centimeter scale is reported. This improved fabrication protocol will facilitate the progress of heteroepitaxially grown MOFs for molecular separators and micro‐opto‐electronic devices.
Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal-organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X-ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH) 2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br 2 BDC) into a copper-based MOF Cu 2 L 2 DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane; L = BDC/Br 2 BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.
Luminescent Metal-organic Frameworks (MOFs) are known to spontaneously self-assemble on human fingerprints. Here, we investigate the different chemical components of fingerprints and determine that MOF growth is predominantly induced by...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.