KRAS and NRAS mutations occur in 45% of colorectal cancers (CRC), with combined MAPK pathway and CDK4/6 inhibition identified as a potential therapeutic strategy. In the current study, this combinatorial treatment approach was evaluated in a co-clinical trial in patient-derived xenografts (PDX), and safety was established in a clinical trial of binimetinib and palbociclib in metastatic CRC patients with RAS mutations. Across 18 PDX models undergoing dual inhibition of MEK and CDK4/6, 60% of tumors regressed, meeting the co-clinical trial primary endpoint. Prolonged duration of response occurred predominantly in TP53 wild-type models. Clinical evaluation of binimetinib and palbociclib in a safety lead-in confirmed safety and provided preliminary evidence of activity. Prolonged treatment in PDX models resulted in feedback activation of receptor tyrosine kinases and acquired resistance, which was reversed with a SHP2 inhibitor. These results highlight the clinical potential of this combination in CRC, along with the utility of PDX-based co-clinical trial platforms for drug development.
Designing studies of immunotherapy is limited due to a lack of pre-clinical models that reliably predict effective immunotherapy responses. To address this gap, we developed humanized mouse models of colorectal cancer (CRC) incorporating patient-derived xenografts (PDX) with human peripheral blood mononuclear cells (PBMC). Humanized mice with CRC PDXs were generated via engraftment of autologous (isolated from the same patients as the PDXs) or allogeneic (isolated from healthy donors) PBMCs. Human T cells were detected in mouse blood, tissues, and infiltrated the implanted PDXs. The inclusion of anti-PD-1 therapy revealed that tumor responses in autologous but not allogeneic models were more comparable to that of patients. An overall non-specific graft-vs-tumor effect occurred in allogeneic models and negatively correlated with that seen in patients. In contrast, autologous humanized mice more accurately correlated with treatment outcomes by engaging pre-existing tumor specific T-cell populations. As autologous T cells appear to be the major drivers of tumor response thus, autologous humanized mice may serve as models at predicting treatment outcomes in pre-clinical settings for therapies reliant on pre-existing tumor specific T-cell populations.
<div>Abstract<p>KRAS and NRAS mutations occur in 45% of colorectal cancers, with combined MAPK pathway and CDK4/6 inhibition identified as a potential therapeutic strategy. In the current study, this combinatorial treatment approach was evaluated in a co-clinical trial in patient-derived xenografts (PDX), and safety was established in a clinical trial of binimetinib and palbociclib in patients with metastatic colorectal cancer with RAS mutations. Across 18 PDX models undergoing dual inhibition of MEK and CDK4/6, 60% of tumors regressed, meeting the co-clinical trial primary endpoint. Prolonged duration of response occurred predominantly in TP53 wild-type models. Clinical evaluation of binimetinib and palbociclib in a safety lead-in confirmed safety and provided preliminary evidence of activity. Prolonged treatment in PDX models resulted in feedback activation of receptor tyrosine kinases and acquired resistance, which was reversed with a SHP2 inhibitor. These results highlight the clinical potential of this combination in colorectal cancer, along with the utility of PDX-based co-clinical trial platforms for drug development.</p>Significance:<p>This co-clinical trial of combined MEK-CDK4/6 inhibition in RAS mutant colorectal cancer demonstrates therapeutic efficacy in patient-derived xenografts and safety in patients, identifies biomarkers of response, and uncovers targetable mechanisms of resistance.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.