The illicit drug overdose crisis in North America continues to devastate communities with fentanyl detected in the majority of illicit drug overdose deaths. The COVID-19 pandemic has heightened concerns of even greater unpredictability in the drug supplies and unprecedented rates of overdoses. Portable drug-checking technologies are increasingly being integrated within overdose prevention strategies. These emerging responses are raising new questions about which technologies to pursue and what service models can respond to the current risks and contexts. In what has been referred to as the epicenter of the overdose crisis in Canada, a multi-technology platform for drug checking is being piloted in community settings using a suite of chemical analytical methods to provide real-time harm reduction. These include infrared absorption, Raman scattering, gas chromatography with mass spectrometry, and antibody-based test strips. In this Perspective, we illustrate some advantages and challenges of using multiple techniques for the analysis of the same sample, and provide an example of a data analysis and visualization platform that can unify the presentation of the results and enable deeper analysis of the results. We also highlight the implementation of a various service models that co-exist in a research setting, with particular emphasis on the way that drug checking technicians and harm reduction workers interact with service users. Finally, we provide a description of the challenges associated with data interpretation and the communication of results to a diverse audience.
Purpose
While there is increasing interest in implementing drug checking within overdose prevention, we must also consider how to scale-up these responses so that they have significant reach and impact for people navigating the unpredictable and increasingly complex drug supplies linked to overdose. The purpose of this paper is to present a distributed model of community drug checking that addresses multiple barriers to increasing the reach of drug checking as a response to the illicit drug overdose crisis.
Design/methodology/approach
A detailed description of the key components of a distributed model of community drug checking is provided. This includes an integrated software platform that links a multi-instrument, multi-site service design with online service options, a foundational database that provides storage and reporting functions and a community of practice to facilitate engagement and capacity building.
Findings
The distributed model diminishes the need for technicians at multiple sites while still providing point-of-care results with local harm reduction engagement and access to confirmatory testing online and in localized reporting. It also reduces the need for training in the technical components of drug checking (e.g. interpreting spectra) for harm reduction workers. Moreover, its real-time reporting capability keeps communities informed about the crisis. Sites are additionally supported by a community of practice.
Originality/value
This paper presents innovations in drug checking technologies and service design that attempt to overcome current financial and technical barriers towards scaling-up services to a more equitable and impactful level and effectively linking multiple urban and rural communities to report concentration levels for substances most linked to overdose.
Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.