BackgroundThe efficiency of biotechnological production processes depends on selecting the best performing microbial strain and the optimal cultivation conditions. Thus, many experiments have to be conducted, which conflicts with the demand to speed up drug development processes. Consequently, there is a great need for high-throughput devices that allow rapid and reliable bioprocess development. This need is addressed, for example, by the fiber-optic online-monitoring system BioLector which utilizes the wells of shaken microtiter plates (MTPs) as small-scale fermenters. To further improve the application of MTPs as microbioreactors, in this paper, the BioLector technology is combined with microfluidic bioprocess control in MTPs. To realize a user-friendly system for routine laboratory work, disposable microfluidic MTPs are utilized which are actuated by a user-friendly pneumatic hardware.ResultsThis novel microfermentation system was tested in pH-controlled batch as well as in fed-batch fermentations of Escherichia coli. The pH-value in the culture broth could be kept in a narrow dead band of 0.03 around the pH-setpoint, by pneumatically dosing ammonia solution and phosphoric acid to each culture well. Furthermore, fed-batch cultivations with linear and exponential feeding of 500 g/L glucose solution were conducted. Finally, the scale-up potential of the microscale fermentations was evaluated by comparing the obtained results to that of fully controlled fermentations in a 2 L laboratory-scale fermenter (working volume of 1 L). The scale-up was realized by keeping the volumetric mass transfer coefficient kLa constant at a value of 460 1/h. The same growth behavior of the E. coli cultures could be observed on both scales.ConclusionIn microfluidic MTPs, pH-controlled batch as well as fed-batch fermentations were successfully performed. The liquid dosing as well as the biomass growth kinetics of the process-controlled fermentations agreed well both in the microscale and laboratory scale. In conclusion, a user-friendly and disposable microfluidic system could be established which allows scaleable, fully controlled and fully monitored fermentations in working volumes below 1 milliliter.
In normal epithelia, the epithelial cell adhesion molecule (EpCAM) expression is relatively low and only present at the basolateral cell surface. In contrast, EpCAM is aberrantly overexpressed in various human carcinomas. Therefore, EpCAM is considered to be a highly promising target for antibody-based cancer immunotherapy. Here, we present a new and fully human cytolytic fusion protein (CFP), designated "antiEpCAM(scFv)-MAP," that is comprised of an EpCAM-specific antibody fragment (scFv) genetically fused to the microtubule-associated protein tau (MAP). Anti-EpCAM(scFv)-MAP shows potent EpCAM-restricted proapoptotic activity toward rapidly proliferating carcinoma cells. In vitro assays confirmed that treatment with anti-EpCAM(scFv)-MAP resulted in the colocalization and stabilization of microtubules, suggesting that this could be the potential mode of action. Dose-finding experiments indicated that anti-EpCAM(scFv)-MAP is well tolerated in mice. Using noninvasive far-red in vivo imaging in a tumor xenograft mouse model, we further demonstrated that anti-EpCAM(scFv)-MAP inhibited tumor growth in vivo. In conclusion, our data suggest that anti-EpCAM(scFv)-MAP may be of therapeutic value for the targeted elimination of EpCAM þ carcinomas. Mol Cancer Ther; 13(9); 2194-202. Ó2014 AACR.
Human cytolytic fusion proteins (hCFPs) are therapeutically efficacious recombinant polypeptides comprising a target cell-specific binding component and a human effector domain that induces apoptosis. Compared with former generations of immunotoxins, which contain immunogenic cytotoxic domains derived from bacteria or plants, hCFPs contain solely human proteins that do not induce an immune response, thus avoiding the development of neutralizing antibodies. Here, we investigated the suitability of human angiogenin (Ang) mutants as effector domains. We engineered 3 different Ang variants that outperformed the wild-type enzyme by replacing amino acid residues with key roles in the protein's catalytic activity and its interaction with the ribonuclease inhibitor RNH1. The cytotoxic potential of these mutants was compared with wild-type Ang by fusing each to the CD64-specific single-chain variable fragment H22. All hCFPs were successfully expressed in HEK293T cells and purified from the cell culture supernatant by immobilized metal ion affinity chromatography. The Ang mutant-based hCFPs showed normal binding activity towards human interferon-γ-stimulated CD64 HL-60 cells and activated human macrophages isolated from peripheral blood mononuclear cells, but increased cytotoxicity based on reduced affinity towards RNH1 and higher ribonucleolytic activity.
BackgroundThe analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now.ResultsIn this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF) containing 10-20% (v/v) 1-ethyl-3-methylimidazolium acetate (EMIM Ac) for 60 minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2 μm to avoid column blocking, separated at 0.5 mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS). The applicability of this method was evaluated for the three cellulose types Avicel, α-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose.ConclusionsIn conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.
Antibody-based immunotherapy of leukemia requires the targeting of specific antigens on the surface of blasts. The Fc gamma receptor (CD64) has been investigated in detail, and CD64-targeting immunotherapy has shown promising efficacy in the targeted ablation of acute myeloid leukemia (AML), acute myelomonocytic leukemia (AMML) and chronic myeloid leukemia cells (CML). Here we investigate for the first time the potential of FcaRI (CD89) as a new target antigen expressed by different myeloid leukemic cell populations. For specific targeting and killing, we generated a recombinant fusion protein comprising an anti-human CD89 single-chain Fragment variable and the well-characterized truncated version of the potent Pseudomonas aeruginosa exotoxin A (ETA'). Our novel therapeutic approach achieved in vitro EC 50 values in range 0.2-3 nM depending on the applied stimuli, that is, interferon gamma or tumor necrosis factor alpha. We also observed a dose-dependent apoptosis-mediated cytotoxicity, which resulted in the elimination of up to 90% of the target cells within 72 hr. These findings were also confirmed ex vivo using leukemic primary cells from peripheral blood samples of three previously untreated patients. We conclude that CD89-specific targeting of leukemia cell lines can be achieved in vitro and that the efficient elimination of leukemic primary cells supports the potential of CD89-ETA' as a potent, novel immunotherapeutic agent.Under normal physiological conditions, the Fc-alpha receptor (FcaR, CD89) is present on monocytes, macrophages, neutrophils and eosinophils. Its biological function is to interact with IgA-opsonized targets, triggering several immunological defense processes, e.g. phagocytosis, antibody-dependent cellmediated cytotoxicity and the stimulation of inflammatory mediators. 1 In many human tissues, most of the CD89 1 cells are neutrophils and monocytes/macrophages. Furthermore, although monocytes in the blood express relatively high levels of CD89, most tissue macrophages (particularly those located in the gut lamina propria) tend not to express CD89 on the surface, with a parallel downregulation of CD14. 2 This suggests that the abundance of CD89 depends on the differentiation stage of myeloid cells. The biological relevance of CD89 downregulation during the maturation of myeloid precursor cells is unknown.On the other hand, the presence of anomalous numbers of myeloid cells in the blood is indicative of several myelogenous hematological malignancies, with AML and CML being the most common. 3 The different forms of myeloid leukemia have been categorized using the French-American-British (FAB) system divided into eight subtypes (M0-M7). The World Health Organisation (WHO) uses expanded criteria. 4 A standard panel of markers is used for detailed diagnosis and classification, including Fc gamma receptor (FcgRI) (CD64) which is present on AML subtypes M0-M5 in varying degrees. 5 Thus far, there is no evidence that other Fc receptors can be used as diagnostic antigens or therapeutic targets in A...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.