In vitro three-dimensional (3D) cell culture models, such as organoids and spheroids, are valuable tools for many applications including development and disease modeling, drug discovery, and regenerative medicine. To fully exploit these models, it is crucial to study them at cellular and subcellular levels. However, characterizing such in vitro 3D cell culture models can be technically challenging and requires specific expertise to perform effective analyses. Here, this paper provides detailed, robust, and complementary protocols to perform staining and subcellular resolution imaging of fixed in vitro 3D cell culture models ranging from 100 µm to several millimeters. These protocols are applicable to a wide variety of organoids and spheroids that differ in their cell-of-origin, morphology, and culture conditions. From 3D structure harvesting to image analysis, these protocols can be completed within 4-5 days. Briefly, 3D structures are collected, fixed, and can then be processed either through paraffinembedding and histological/immunohistochemical staining, or directly immunolabeled and prepared for optical clearing and 3D reconstruction (200 µm depth) by confocal microscopy.
Rhabdomyosarcoma (RMS) is the main form of soft-tissue sarcoma in children and adolescents. For 20 years, and despite international clinical trials, its cure rate has not really improved, and remains stuck at 20% in case of relapse. The definition of new effective therapeutic combinations is hampered by the lack of reliable models, which complicate the transposition of promising results obtained in pre-clinical studies into efficient solutions for young patients. Inter-patient heterogeneity, particularly in the so-called fusion-negative group (FNRMS), adds an additional level of difficulty in optimizing the clinical management of children and adolescents with RMS. Here, we describe an original 3D-organoid model derived from relapsed FNRMS and show that it finely mimics the characteristics of the original tumor, including inter- and intra-tumoral heterogeneity. Moreover, we have established the proof-of-concept of its preclinical potential by re-evaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on the exploitation of bulk and single-cell omics data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.